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In our age of ubiquitous digital displays, adults often read in short, opportunistic interludes. In this context of

Interlude Reading, we consider if manipulating font choice can improve adult readers’ reading outcomes. Our

studies normalize font size by human perception and use hundreds of crowdsourced participants to provide

a foundation for understanding, which fonts people prefer and which fonts make them more effective read-

ers. Participants’ reading speeds (measured in words-per-minute (WPM)) increased by 35% when comparing

fastest and slowest fonts without affecting reading comprehension. High WPM variability across fonts sug-

gests that one font does not fit all. We provide font recommendations related to higher reading speed and
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discuss the need for individuation, allowing digital devices to match their readers’ needs in the moment. We

provide recommendations from one of the most significant online reading efforts to date. To complement this,

we release our materials and tools with this article.

CCS Concepts: • Human-centered computing → Human computer interaction (HCI); User studies;

Empirical studies in HCI ;Web-based interaction; Visualization design and evaluation methods;
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1 INTRODUCTION

We spend more time on our screens now than ever before, trying to consume a rapidly growing
amount of information through digital devices. Reading quickly and comprehending this ever-
growing body of information is integral to work, leisure, social interaction, and personal advance-
ment. The difficulty of coping with this information overload is well documented [43]. The ability
to “keep up” with the proliferation of personal information streams, such as social media, and
workplace information streams, such as e-mail, is vital. Several studies spanning 10 years show
adult readers across the United States and Europe continue to struggle with reading speed and
comprehension [3, 4, 54, 62, 63, 102].

We posit that customizing reading experiences with font choice can lead to significant real-
world improvements in digital tools and applications (e.g., e-readers, web-browsers, and reading
applications on phones). Prior research has shown that tuning the font family, character spacing,
and line spacing of text can significantly improve the reading performance of school children [96].
Early results from the same non-profit organization, Readability Matters, show that manipulating
these text formats can increase accurate reading speed among adult readers by 20% or more [30].
Notably, current settings in e-readers provide options for readers to adjust the font family and size
of the text. Motivated by these early but promising results, in this work we ask:

What gains in reading speed and comprehension are possible by manipulating

font choice alone?

To answer this question, we conduct remote readability studies, by recruiting and studying
hundreds of paid crowd-workers aged 18–71, reading in their everyday reading environments. We
focus our attention upon Interlude Reading [108], which we define as an everyday reading context
on digital devices where people read a few paragraphsworth of content. In Interlude Reading, short
passages, or subsections of a longer document, are read interleaved with other tasks. Interlude
Reading is a reading context that falls between Glanceable and Long-Form Reading [2, 16, 28, 38,
92, 104].

To systematically compare 16 common fonts, we designed a study to evaluate participants’ pref-
erence for fonts and measure reading speed and comprehension. This design is supported by re-
sults from our two preliminary studies. Our first study “Accelerating Adult Readers with Type-
face: A Study of Individual Preferences and Effectiveness” [107], shows initial evidence that font
preference does not predict effectiveness. In this article, we re-analyze the results from our prior
work to show that the size of a font (measured as x-height, average character height, or width)
affects preference. This new result shows a need to control for and normalize font size to better
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understand individual preferences and effectiveness. Our font normalization process uses Times at
16px as the reference font.1 After selecting the reference font, we computed three new font sizes
per font for the 15 remaining fonts. Each new font size corresponds to matching the reference
(Times) in x-height, average character height, and average character width. We then conducted a
perceptual task to derive a crowd-driven size normalization for each font. Next, using an im-
proved study design featuring this set of normalized fonts, we conducted our large-scale study on
Amazon’s Mechanical Turk to evaluate the preference and effectiveness (speed and comprehen-
sion) of our newly normalized fonts.
The results from our remote readability studies focus on reading speed, while we attempt to

account for font size, preference, and familiarity. While our methods sacrifice internal validity by
remotely studying reading behaviors, we hope to provide applied validity by studying participants’
reading behaviors in their everyday environments.
Our results show that no single factor predicts reading speed, and interestingly, preference does

not predict speed even when font size is controlled. Our main takeaway is that different fonts
work best for different people. While our results point to some broad recommendations regarding
font choice for older readers, we believe future work is needed to answer this question in a more
controlled environment. By focusing our results on the individual, we see a potential 35% increase
in reading speed (comparing fastest to slowest fonts) while maintaining comprehension. These
potential gains are possible through changing font alone.
These results inform a discussion about the potential for personalizing font choices, which can

guide future reading applications and, more generally, any other text-heavy digital resource. If the
right reading tools are made readily available to all, the cumulative impacts can be significant and
widespread. Potential impacts range from improvements to struggling readers’ learning outcomes,
more effective ingestion of reading material by college students, and quicker information intake
in high-paced business settings. Our results show potential gains in reading performance can be
obtained by reading in one’s personally optimal font, tested with remote crowd-workers using
online tests. Furthermore, to help future researchers, we open-source our web applications and
reading materials with this article.2

2 RELATEDWORK

With the rise of remote studies, there is an opportunity to explore, describe, and leverage digital
mediums’ flexibility to improve reading experiences outside the traditional lab setting. Reading in
short opportunistic interludes occupies a central role in textual consumption, as the information
age increasingly drives individuals to consume more information. Our work thus focuses on a
specific type of everyday reading we term Interlude Reading, a common everyday reading context
for adults on digital devices, which falls in a continuum between reading at-a-glance and longform
reading (Figure 1). Researchers have started exploring this reading mode using remote and in-lab
study methods [39, 92, 93, 107]. This section reviews how digital reading research has evolved over
two decades, starting with Boyarski’s foundational 1998 article [21]. We cover relevant work about
the effects of font features on reading performance. We end with a discussion of prior work in the
space of font preference, aesthetics, and typography as they relate to reading effectiveness.

2.1 Types of Reading

2.1.1 Long-Form Reading. When reading for long periods, the primary task is reading, and all
other tasks may be considered secondary and possible distractions. A common digital device used
for long-form reading is e-reader [81]. In this reading mode, evidence for the impact of font choice

116px is the default font size in Firefox and Chrome.
2Available at https://github.com/virtual-readability-lab/tochi-paper-materials-towards-individuated-reading.
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Fig. 1. Reading modes can be viewed on a duration continuum, ranging from the well studied domains of
Glanceable Reading (few words, few seconds) to Long Form reading (long documents, minutes to hours).
Interlude Reading, as introduced in this article, falls between these two reading modes. We define Interlude
Reading as the kind of reading that happens in a single brief sitting (i.e., a few paragraphs worth) or at short
opportunistic interludes.

on reading efficacy or experience is less available for primarily methodological reasons: studies
linking typography to performance rely on participants reading short passages of text. Such efforts
can nevertheless shed light on considerations for Interlude Reading. For example, Rudnicky and
others showed that letter size and case were influential factors in reading performance [89], a
finding reinforced by Bernard and Mills, and Chatrangsan and Petrie [13, 28].

2.1.2 Glanceable Reading. In contrast to long-form reading, reading at a glance assumes that
the reading activity is the distraction. In glancing at the text, the reader diverts attention from
primary tasks: driving, walking, or social interaction. As such, in glanceable reading, the goal
becomes one of imposing a minimal cost on the crucial non-reading activity by increasing reading
effectiveness. In the domain of glanceable reading, performance differences between fonts are well
documented [37, 38, 83]. The concept of legibility in at-a-glance reading revolves around the ability
to collect understanding of content under time pressure. In both Western and symbolic Eastern
languages, others have demonstrated that psycho-physical methods could differentiate the utility
of individually optimal fonts [37]. Sawyer et al. specifically call out designers’ propensity to focus
on aesthetic concerns over performance concerns, especially in contextswhere safety is paramount
and the cost of failure high, such as in the automotive context [91].

2.1.3 Interlude Reading. We define Interlude Reading to capture opportunistic reading (during
short breaks), quick information gathering, and content consumption through social media plat-
forms. Examples are reading in a single brief sitting, on public transport, waiting in line, or taking a
brief break to browse news, social media, blog posts, or to read sections of more extensive work. In-
formation gathering of many types can fall under this umbrella. Increasingly, short, opportunistic
interludes occupy a central role in textual consumption, primarily as information overload drives
individuals to consume more information in smaller chunks and interleaved with other activities.
Thus, Interlude Reading cannot be categorized as either glanceable or long-form, requiring sepa-
rate research attention.
Interlude Reading aligns with easily digestible reading materials (i.e., a few paragraphs worth)

and fits Carver’s recommended range of 138–600 words per minute for reading with comprehen-
sion [26]. The reading length of a few paragraphs is also well-suited for shorter remote crowd-
sourcing tasks deployed on the web. This web-based naturalistic setting sacrifices the internal
validity of prior in-lab studies [16, 21, 88], in exchange for greater ecological validity. While
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Fig. 2. This table is sorted by the number of participants (i.e., column N). It summarizes the main inde-
pendent and dependent variables from related reading studies. The dependent variables correspond to the
following evaluation metrics, which appear consecutively in the table in abbreviated form: speed, compre-
hension, preference, familiarity, accuracy, and eye movements. All checked columns indicate the use of the
variable in the listed study; however, note that implementations vary between studies. *Our present work is
the first to control for size per font based on participant perception. Therefore, we have a unique normalized
size per font, which we compare to the original font size (hence two sizes tested per font).

remote studies might suffer from reader distractions [98] and uncontrolled variables, such as view-
ing distance [56] and the physical size of digital text [120], it is easier to recruit more participants
to offset this additional noise. To provide appropriate stimuli balancing naturalistic and practical
considerations, we specifically source short passages of leveled reading material from a reading
specialist (Section 5.1).

2.2 Past Efforts on Readability

There is a rich history of research exploring typography as a tool to enhance readability and reader
efficacy. While past work has individually considered font preference, familiarity, comprehension,
and reading speed [6, 7, 9, 14, 16, 17, 19, 21, 79, 88, 113], these factors can be tightly coupled. For the
first time, our work considers these factors simultaneously, controlling for some and systematically
varying others to address possible confounds.

Conducting readability studies is difficult given the number of factors that need to be consid-
ered simultaneously. This is compounded by the evolving diversity of devices, screen sizes and
resolutions, and available fonts. For example, research from the early 2000s often studied font sizes
ranging from 10–14 points. Rendering fonts at 14 points on a mobile device today would produce a
different visual font size compared to a monitor from the early 2000s. The fonts we commonly read
in on the web have changed as well. For example, based on Google Font Analytics, Roboto, and
Open Sans account for 51% of total font views today; and Lato, Montserrat, and Oswald account
for another 11%. This evolving set of constraints presents a need to explore new remote methods
to study readability across a variety of devices and contexts using modern fonts.
Our work derives its design from prior in-lab studies [16, 19, 21] to develop novel approaches for

collecting data remotely to help discern subtle effects, which in some cases affirm and, in others,
refute prior results. In what follows, we include a detailed comparison of our work with prior
studies, summarized in Figure 2.
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2.2.1 Comparing Individual Studies on Readability. We recognize the efforts of many past re-
searchers covering similar areas as our work. It is essential to acknowledge the similarities and
differences chronologically so future work can build on these combined efforts as readability re-
search continues to change in response to innovations.
Many early studies from the Human-Computer Interaction community laid the groundwork

for the methodologies in subsequent studies. They provided initial evidence of the relationships
between font size, preference, and effectiveness, while relying on smaller numbers of fonts and
participants. Boyarski et al. [21] studied four fonts (Georgia, Verdana, Verdana Italic, and Times
Roman) in a lab setting. They recruited 48 University participants to study reading speed, com-
prehension, and preference. They found anti-aliasing did not decrease the preference for a font, at
least for the 10 point size they tested. Compared to recent studies, 10 point size is not commonly
studied because monitors have changed in size and physical capabilities; thus, making the visual
size of 10 point size text appear smaller than it used to.
Bernard et al. ran four studies building on Boyarski’s work by expanding the sizes and fonts

studied [13–16]. Bernard et al. [13] studied the effects of font type and size on the reading time
and comprehension by older adults aged 62–83 in a lab setting. They recruited 27 participants to
compare Times New Roman, Arial, Georgia, and Verdana in two different sizes per font by read-
ing aloud. Comparing font sizes 12 and 14 points, they found that participants preferred larger
fonts. In a follow-up study, Bernard et al. [14] recruited 60 participants to read text out load to
measure reading speed, preference, and errors. Participants read in eight fonts (Century School-
book (Schoolbook), Courier New (Courier), Georgia, Times New Roman, Arial, Comic Sans MS,
and Tahoma, Verdana) in three sizes (10, 12, and 14 points). They found fonts at 10 point size were
read significantly slower than fonts at 12 point size. In a subsequent study, Bernard et al. [16]
recruited 40 participants in a lab setting to compare reading speed and preference for Arial and
Times at 12 and 14 point sizes. Their results show that font size affects preference. Our work builds
on this previous research by using fonts normalized by human perception of size to help uncover
additional relationships between preference and font attributes.
Prior work has studied an ever-increasing set of font sizes, primarily on desktop computer mon-

itors. With the advent of smaller screens on mobile devices, Darroch et al. [31] investigated the
effect of font sizes ranging from 2 to 16 points on handheld computers in a lab setting where par-
ticipants read silently. They recruited 24 participants (12 old and 12 young) to compare reading
speed and self-reported preference. Their results indicated that neither age nor preference affected
reading speed.
As eye trackers grew in popularity and becamemore widely available, several researchers seized

this opportunity to enhance readability research validity. Beymer and Russel [18] developed We-
bGazeAnalyzer, to monitor reading performance using an eye tracker to record fixation duration.
Building on this idea of studying readability in a lab setting using eye tracking, Beymer et al. [17]
recruited 82 participants to compare readability and comprehension with Helvetica and Georgia
in sizes 10, 12, and 14 points. They found that for smaller font sizes, fixation durations were signif-
icantly longer. While this resulted in slower reading, the results were not statistically significant.
This work with eye trackers in lab settings conflicts with similar prior results stating that font
affects reading speed [16]. While eye trackers add internal validity to in lab readability studies,
accurately tracking eyes remotely is presently impractical. However, this may well change in the
future by combining research that controls for head position and tracks eye movements, making
eye tracking research possible without dedicated hardware [56, 68, 74].

Studies have remained split on the relationships between font size, preference, and reading
speed. For example, Bhatia et al. [19] studied the effect of font sizes (10, 12, and 14), italics, and
color on readability and likeability within a group of 180 undergraduate students in a lab setting.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 38. Publication date: March 2022.
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They found participants performed better on pages with no italics and high italics compared to
moderate italics. Contrary to prior work, their survey results showed font size has no statistically
significant effect on participants’ rating of likeability. In contrast, Banerjee et al. [6] found partic-
ipants read significantly faster and preferred the largest font size in their study, 14 point. They
compared subjective preference and reading speed and comprehension in a lab setting with 40
young Indian adults. They read aloud in six different fonts (Times New Roman, Verdana, Georgia,
Arial, Courier, and New Tahoma) in sizes 10, 12, and 14 points.

With time, the amount and type of text content consumed on digital devices has increased.
Researchers began to investigate the effect of font familiarity. Beier and Larson [9] studied the re-
lationships between font familiarity, reading speed, and preference. They recruited 60 participants
from a University, aged 20–52 (average 28), in a lab setting. Our measures for font familiarity re-
semble their condition of studying a participant’s familiarity with common letter shapes.
As the variety of devices grew and the size of screens grew larger, Rello et al. [88] argued that

much previous work is outdated due to early studies using font sizes 14px and below and par-
ticipants reading aloud. Their study, conducted in a lab using eye trackers, proved that font size
matters and that the technology underpinning readability research has fundamentally altered how
we study it. Their study proposes that future research should focus on a wider range of fonts us-
ing sizes above 14px. Our study covers 16 fonts with each of their sizes perceptually normalized
to Times at a base size of 16px.
Building on Rello et al.’s work, recent research has studied larger font sizes in various languages

in lab environments. Wang et al. [111] studied reading speed, comprehension, and subjective pref-
erence using Chinese texts in a lab setting. They recruited 91 participants with an average age
of 24 years, to complete their studies on mobile devices. They considered four typographic vari-
ables: font size (11, 14, 17, 21, and 26 points), line spacing, paragraph spacing, and page margin.
Notably, they created models of touch interactions to predict reader satisfaction with typography
designs. In their conclusion, they call for individuated or personalized reading experiences. Cha-
trangsan and Petrie [28] studied the relationship between font family and size on reading speed,
comprehension, and preference while skim-reading on tablet computers in a lab setting. They re-
cruited 90 younger and older participants in Thailand and the United Kingdom to read in Thai and
English, respectively. They compared three font sizes (14, 16, and 18 point) in four fonts across
both groups—UK: Times New Roman and Arial; Thailand: serif (TH sarabun) and sans-serif type-
face (Kanit). Participants picked their most preferred fonts among six possible combinations. They
found that reading speed and comprehension significantly improved at size 18 point in both coun-
tries. While our work studies fonts in the English language, we hope our methods can be replicated
and extended in other languages.

2.2.2 Deriving Font Preference and Controlling Font Size to Study Effectiveness. While some fonts
are more appropriate for headers, body text, or even stylistic headlines, the effectiveness and pref-
erence of a font can be subjective [65]. How then can people select their most preferred font among
a growing number of possibilities? O’Donovan et al. identified the difficulty modern graphic de-
signers face selecting their preferred font from many fonts [72].

To derive someone’s definitive ranking for preference, researchers in the HCI Community often
use pairwise comparisons [46, 75, 80, 119]. Our approach to finding a participant’s preferred fonts
builds on the ideas from Boyarski et al. [21] and Wallace et al. [107] by using a toggle test on a
single screen to definitively rank a participant’s font preferences for body text. Our current work
includes one fundamental difference from the past work discussed–our preference test controls
for perceived font size. Past work has shown font size and preference are interdependent [14, 17].
Some fonts have been designed specifically to appear larger than others when rendered at the
same size, to give them an advantage. For example, typographers have intentionally manipulated
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font attributes, such as x-height, in the case of Georgia, to give it a larger perceived size compared
to traditional fonts [21]. Prior studies do not control for font size based on human perception and
instead compare fonts in the same fixed pixel size per condition [16, 19, 88, 107]. By controlling
font size based on human perception, our tests decouple font size from our results.

2.2.3 Controlling for Font Aesthetics and Reading Environments. Prior work has identified font
as a straightforward tool to optimize reading performance [2, 103]. As aforementioned, font choice
can help mediate reading ability in both at-a-glance and long-form reading [13, 28, 37, 93].

There are differences in font attributes across individual fonts that we consider but do not con-
trol for. For example, Burmistrov et al. show that light and ultra-light fonts also induce higher
cognitive load [24]. While we do not control for this, our work studies fonts with thinner stroke
widths such as Montserrat and Avant-Garde that readability experts recommend for reading body
text [29]. To provide a generally safe line spacing to control for variations in the length of ascen-
ders and descenders per font [20], we use a fixed-line spacing of 1.5. This decision follows the
recommendations of Paterson and Tinker [76] and Rello et al. [87, 88] to ensure consistent read-
ability and comprehension given a variety of fonts. Our results point to future work to study the
individuated differences for other design choices such as character and word spacing.
In non-lab settings, participants read with the device they have in-hand; thus, posing poten-

tial validity issues when studying readers in their natural reading environments. Duchnicky and
Kolers [40] investigated the effect of display size on reading scrolling text and reported little to be
gained by increasing display size to more than four lines either in terms of reading speed or com-
prehension. Resiel and Shneiderman [85] confirm their findings, showing comprehension rates
on smaller screens are generally equivalent to their larger counterparts. While participants in our
study use different displays, the interface size is fixed to control any extenuating factors that might
affect reading speed, comprehension, and preference. However, future work in remote readability
should evaluate how to control the visual size of fonts and screen viewing distance [56, 120].

3 STUDY MATERIALS

This section discusses, how we selected the fonts and designed the web interfaces to enable our
remote reading studies.

3.1 Selection of Fonts

There are over 750,000 digital fonts and counting [99]. Our study aimed at capturing popular fonts
across various media and periods ranging from print to digital. The 16 fonts (Figure 3) used in our
studies [107] were based on the following criteria:
Four PDF Fonts:We selected four of the most common fonts used for (digital) documents.3 PDFs

are a common medium that contain a vast amount of text that people read in digital environ-
ments. Times and Arial are not only common PDF fonts; they have been frequently studied in
prior work [16, 88]. Readers are more likely familiar with fonts selected from this category, and
familiarity is one factor posited to affect preference and reading speed [7].
Four Newsprint Fonts: We selected four of the most popular fonts from newspapers and print

media [33, 59]. If fonts originally designed for newspapers and other print media do not compare
favorably with fonts designed for digital screens, future researchers studying readability on digital
devices can leave out these fonts (see Section 7.3). Even within this group, Helvetica is a common

3Found by analyzing a corpus of 2,302 PDF documents.While we used an internal Adobe corpus, the documents themselves

were curated from freely available documents on the web, without topic constraints, so the conclusions should generalize

to other general document collections.
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Fig. 3. The 16 fonts used in our studies chosen from four categories: PDF, Newsprint, Web, and Readability.
The goal was to select a group of 16 fonts that cover common use cases and are frequently encountered by
potential participants. The Samples column contains “Rewashington” rendered in each font, for additional
visual comparison. Please see Appendix Section A for the filenames used for each font.

font used across devices and software. While it was originally designed in 1961, it has since been
redesigned for screens.
Four Web Fonts:We selected four of the most common fonts used on websites.4 Based on Google

Fonts Analytics, Roboto, and Open Sans have accounted for more than 50% of all views. While
Oswald is commonly used for titles and headers, it has unique attributes among our selected fonts,
including tight character spacing and particularly thick stroke width.
Four Readability Fonts: We selected four fonts recommended by readability experts [29, 97] not

otherwise covered by the other categories. Field studies conducted by these readability experts
show these fonts have led to reading speed gains in children. Also, these fonts possess attributes
thought to increase readability, such as larger x-heights than most fonts. In particular, Noto Sans
was specifically designed to be readable on small screens.

Of these fonts, we selected Times as a baseline to study perceived sizes in fonts and reading
speed and comprehension. Times is one of the most common fonts both on screen and in printed
text, and appears in many other reading studies [6, 16, 21, 28]. We also chose Noto Sans as a

4https://fonts.google.com/analytics. [Accessed August 2019]
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baseline to compare reading speed and comprehension because it was the best performing font in
our previous study [107].

3.1.1 Typographic Considerations. Every font contains many attributes in its unique anatomy,
and the present study does not attempt to tease apart effects of individual attributes. Instead, we
selected 16 fonts with diverse font attributes that are commonly available across platforms. While
there are notable omissions, includingmonospaced fonts, we believe this current list covers several
unique categories and classifications.
Prior work has studied serif vs. sans-serif fonts in-depth [14, 17]. Our font selection has three

serif and 13 sans-serif fonts across different classifications. We include various fonts classified as
sans-serif: three Neo-Grotesque, three Geometric, three Humanist, three Gothic, and one Modern;
our serif fonts include: two Old Style and one Transitional. Future work on serif vs. sans-serif fonts
can focus on fonts from the same family, such as Source Sans Pro, Source Serif Pro, and Source
Code Pro.
All of our study fonts have regular character width, while Oswald and Franklin Gothic are con-

densed. We also have specific pairs of fonts that share similar design histories and attributes. Arial
andHelvetica have similarmetrics and anatomy, such as x-height, ascenders, and descenders. Open
Sans is a general use font derived from Noto Sans. Typographers designed Noto Sans for the small
screens on Android devices. Poynter Gothic and Franklin Gothic share a similar origin but are
different widths. Four of our fonts (Arial, Helvetica, Avenir Next, and Times) are likely to be very
familiar to readers since they are pre-installed in macOS andWindows/Office. Also, five fonts have
hinting (i.e., are engineered for reading on screens with low resolutions): Arial, Helvetica, Calibri,
Noto Sans, and Times.
Half of the study’s fonts have anatomical features that have been associated with improved

readability, such as generous x-height, open apertures, low contrast, wider forms, and short as-
cenders: Calibri, Noto Sans, Open Sans, Lato, Utopia, Montserrat, Arial, and Helvetica. Our other
study fonts that do not cover these readability features provide a variety of other font anatomies
and attributes previously discussed in this section. We provide our large crowdsourced dataset
covering these different fonts to help other researchers expand on our results.5

3.2 Web Interfaces to Study Readability

We conducted our studies remotely using custom made web interfaces and recruited paid crowd-
workers from Amazon Mechanical Turk. In this remote study environment, participants read in
their natural environments, using their own devices. While this increases the applied validity of
our results, it may generate additional noise. While crowdworkers may provide different data than
participants in a laboratory setting, we believe the large number of participants, we can recruit
remotely compensates for individual noise. The following sections discuss how our web interfaces
and methods control various factors to increase internal validity.

3.2.1 Measuring Font Preference. To measure font preference, we developed a font toggle test
that determines a participant’s favorite font through a double-elimination tournament [107]. Par-
ticipants toggle between pairs of fonts and then choose their preferred font of the pair, using the
prompt: “What font is easier for you to read in?” (Figure 4). This prompt was chosen because our
focus is specifically on finding fonts participants prefer to read with, rather than fonts they prefer
in general.
Our toggle test is a simple and efficient method for assessment, motivated by other common

pairwise comparison tasks, such as eye exams and hearing aid adjustments [71]. To evaluate this

5Available at https://github.com/virtual-readability-lab/tochi-paper-materials-towards-individuated-reading.
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Fig. 4. Font preference toggle test: A participant toggles between pairs of fonts to decide which one is easier
to read in. The interface is a fixed width of 420px regardless of the device. All text is rendered with a line
spacing of 1.5. Custom JavaScript is used to ensure participants cannotmodify the size of the interface or text.
This toggle test is done repeatedly within a double-elimination tournament over pairs of fonts to determine
a participant’s preferred font. A participant toggles the font family used to display the sample text, then they
stop on the font of the pair they prefer and click to indicate their preference, before moving on to the next
pair of fonts.

approach, we ran a pilot study on UserTesting.comwhere participants used the think aloudmethod
as they selected, which font they preferred to read in. Notably, when participants saw two similar
fonts, such as Open Sans and Noto Sans, they took longer to decide but ultimately selected the
font they felt caused “less eye-strain.”

3.2.2 Measuring Font Effectiveness. Tomeasure font effectiveness, we had participants read pas-
sages in different fonts while their reading speeds and answers to multiple-choice comprehension
questionswere recorded. The Interlude Reading settingwas particularly suitable for ourweb-based
studies. Having short, paragraph-length texts on different topics allowed participants to remain
engaged and on-task. Participants were given the following instructions:

During the reading sections, please read as quickly as you can, without reading out-loud or

re-reading. However, be prepared to answer comprehension questions about the reading.

Reading speed is measured by starting a timer when text is rendered on the screen. When the
participant selects the button to proceed, the timer is stopped. The proceed button is disabled
for the first 2 seconds after the new text is rendered on the screen to prevent accidental clicks.
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Several research efforts have previously demonstrated the successful collection of behavior data
and response times in a web browser using JavaScript [34, 84]. Also, several studies have agreed
that online response times collected in web browsers are reliable within the range of tens of mil-
liseconds [35, 95].

3.2.3 Interface Considerations. To add more control to our studies, the interfaces did not allow
participants to alter the font size, text box width, or the browser’s zoom level. We constrained
the font sizes and text box width to fixed pixel sizes. These fixed interface dimensions help control
scrolling behavior [64]. Participants across all studies performed the activities in their everyday en-
vironments instead of a lab setting. All participants reported their environments being adequately
lit rooms. Scaltritti et al. found lighting within a natural range of values exert a limited influence on
reading and legibility [94]. Because our study was run remotely and manipulated text using CSS,
we could not control for anti-aliasing. However, our metrics evaluate how individual experiences
differ across fonts, font size, and reading speed. These evaluation metrics fundamentally differ
from other lab studies that focus on the results as a whole [16, 88]. Our work provides approaches
for conducting remote readability at scale.

3.2.4 Incentives for Paid Crowdworkers. Since our study was run remotely with paid crowd-
workers, we could not observe their reading behavior with the same scrutiny as in a lab setting.
However, our study methods and recruitment of paid crowdworkers provide incentives that con-
tribute to the validity of our results. Payment for a task can extrinsically motivate crowdwork-
ers [50]. Crowdworkers are also extrinsically motivated by the prospect of future payments. For
example, if a crowdworker produces low-quality work, this can result in a rejection. This scenario
decreases their approval rate resulting in fewer paid opportunities in the future [58]. To ensure
our participants had prior experience performing remote tasks, our studies recruited crowdwork-
ers with approval ratings of greater than or equal to 99%, and they must have completed at least
100 tasks on Amazon’s Mechanical Turk. Also, paid crowdworkers may be intrinsically motivated
to participate in tasks they are interested in [66, 67]. Paid crowdworkers might also be motivated
to perform the task honestly because they are provided personal insights about their reading speed
and preference in different fonts at the end of the study: (i) Their most preferred font, and their
reading speed, measured in words-per-minute; (ii) Their fastest font, and their reading speed in
it; and (iii) An interesting fact about their most preferred font. Providing personal insights to help
participants improve and evaluate themselves has proven to be an important intrinsic motivator
in other studies [32, 84]. Furthermore, because of the combination of (1) splitting texts into short
paragraphs across multiple screens, (2) disabling the proceed button for the first few seconds of
every screen, and (3) providing multiple-choice comprehension questions and surveys after every
passage, participants were incentivized to complete the readings rather than just click through
them. Given that our reading tasks require only a few minutes of concentration at a time, Inter-
lude Reading is particularly well suited to study with crowdsourced research.

4 PRELIMINARY INVESTIGATIONS OF FONT SIZE AND PREFERENCE

Motivated by prior work showing that font size can affect readability, this section contains a re-
analysis of data from our prior study [107], investigating the effects of perceived font size on
preference. To control for these confounding effects of font size, we present a crowdsourced ap-
proach for normalizing font size that we then apply to the fonts in our main study on reading
effectiveness (Section 5).

4.1 Additional Related Work on Font Size

Rello et al. call for future work to address the need to control for the “real size” of letters in a given
font [88]. Rudnicky et al. discussed how readers process text through a normalization process to
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Fig. 5. Text can be normalized by matching its x-height (X), height (H), or width (W) to a reference font. In
our study, Times at size 16px was used as the reference font when normalizing other font sizes. Here, the
text “Rewashington” is rendered in Oswald and normalized to match Times in size for each normalization
method and at the default size of 16px (M = match size). Notably, Oswald has a much larger x-height and
height than Times, resulting in a smaller adjusted size when matching according to these characteristics.
Larger heights are common among many modern fonts designed for screens.

account for font size discrepancies [89]. This inherent normalization process can contribute to
differences in reading speed between fonts. There is an example of prior work normalizing the
height of characters to study character legibility from Chinese typefaces [121]. Our work focuses
on fonts commonly used for the English language. These insights and examples from prior work
motivate the need to normalize font sizes.
Not all fonts are created equal in terms of anatomies and attributes that affect the perceived

size. Prior work has discussed how x-height can increase legibility [79, 113]. In fact, Georgia was
designed to have a larger x-height compared to similar fonts to give a perceived advantage over
Times [21]. At the same time, Times is designed to fit more words on a single page. We provide
starting points for normalizing font sizes below.

4.2 Methods to Normalize Font Size

Our font normalization method uses images of glyphs from a given font, instead of relying on
the font’s OS/2 tables.6 Recent work similarly analyzes images of glyphs instead of OS/2 tables to
extract font size features [78].

To begin the font normalization process, we use Times at 16px as our reference font. We chose
16px because it is the default font size in modern browsers, such as Firefox and Chrome. After
selecting the reference font, we computed three new font sizes per font for the 15 remaining fonts.
Each new font size corresponds to matching the reference (Times) in x-height, height, andwidth

(Figure 5). The paragraphs below describe each normalization method in detail.

6https://docs.microsoft.com/en-us/typography/opentype/spec/os2.
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The normalization method for x-height is the simplest of the three methods. We adjust the
font size of the target font until its x-height matches that of the reference font. To compute the
x-height value of a given font we rasterize the glyph for the lowercase letter x at a given font-size.
The height of this raster bitmap is known as the x-height for that font. The x-height for reference
(source) font at a particular font-size is Fs , termed sourceXHeiдht , and the target font’s x-height,
tarдetXHeiдht . Then, we compute a Δ as (sourceXHeiдht / tarдetXHeiдht ). Finally, we compute
the target font’s new font size NewFs , so it matches the reference font in x-height: NewFs = Fs ×Δ.

The computation for the average bounding box width of a font requires more steps. To begin,
each character of a given font has a different width, known as the advanced-width of a glyph.
Instead of relying on the width of a single character of a glyph, we compute a width of a string
of Latin Characters (i.e., ABC...Zabc...z012...9). We compute each glyph’s advanced-width from
the string and add each advanced-width to get the string’s resultant overall width (Appendix B,
Algorithm 1). Using this algorithm, we compute the resultant width for both the target and source
fonts. Finally, to compute the target font’s normalized font size to match the width of the source
font at 16px, we compute the Δ for width and then multiply it by 16px (Appendix B, Algorithm 2).
The algorithm to compute the height of a given font is similar to computing the width. We

do not rely on a single glyph’s height, and instead, we use the same string of Latin Characters as
above and compute each glyph’s tight bounding box at a particular font size (e.g., 16px). Then, we
compute the minimum and maximum points of all bounding boxes. Such minimum and maximum
bounding box points will provide a resultant height of the overall font. We compute the resultant
height for both the target and source fonts (Appendix B, Algorithm 3). Finally, to compute the
target font’s normalized font size to match the height of the source font at 16px, we compute the
Δ for height and then multiply it by 16px (Appendix B, Algorithm 4).

4.3 New Findings on Font Size and Preference from our Prior Remote

Readability Study

While prior work has compared fixed font sizes to each other [16, 88], we recognize that partic-
ipants may perceive two fonts to be different sizes even when rendered at the same fixed size.
We discovered this by re-analyzing our data from our prior published work “Accelerating Adult
Readers with Typeface: A Study of Individual Preferences and Effectiveness” [107]. The following
text features new results not previously published in our prior work [107], showing that font size
influenced font preference during our pairwise comparison test. These new results motivate our
new studies and study design changes in the current article.
We conducted our prior Interlude Reading study remotely with 63 participants recruited from

university mailing lists, UserTesting.com, and Amazon’s Mechanical Turk. All fonts were rendered
at size 16px similar to other research [112]. To measure whether perceptual font sizes affect reader
font preferences, we first computed each font’s x-height, average character width, and average
character height using our methods described in Section 4.2. Using prior data collected from the
font preference pairwise comparison test, we measured whether the winning font (i.e., the font
the participant preferred) had the larger x-height, width, and height. We ran two-tailed t-tests
of unequal variance. When considering which font had the larger x-height, the winning font was
larger 52% of the time (t (6012) = 3.7, p < 0.01), for average character width, the winning font was
larger 56% of the time (t (6012) = 9.7, p < 0.01), and for average character height, the winning font
was larger 53% of the time (t (6012) = 4.1, p < 0.01). While font size proved significant, the relatively
small difference in mean win rate per pairwise comparison indicates size was not the only factor
driving font preference.We also consider qualitative feedback that participants had provided about
what made them prefer specific fonts over others:
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P3: “I changed my mind multiple times while toggling. I think I prefer serif fonts for reading but prefer

the look of sans-serif fonts.”

P6: “I liked bolder and bigger fonts. The fonts had to be linear and not curvy”

P11: “I looked at the size of the fonts”

P13: “It was larger, easier to read, and interestingly modern”

P14: “larger fonts and good kerning and bold”

P18: “I like different fonts based on what I am reading/writing, therefore I would choose the font based

on the text and the size”

P22: “I like the slightly bolder and slightly larger letters. these two things combined make the letters

jump out of the screen better.”

P23: “I think that spacing between the characters, words, and lines of text and the weight of the texts

(bold vs. not) was a huge indicator for me in terms of legibility and familiarity. Things I was familiar

with seemed easier to read at times if they were a previously preferred font for reading. Size did not

necessarily matter as much as spacing.”

P26: “Clear and large. I wear glasses and have neck strain so like large fonts.”

P42: “I thought my preferences were going back and forth depending on if I wanted bigger or darker

text in the moment”

P43: “Its easy to read, has a good boldness to it, and isn’t too cluttered.”

P45: “font height seemed to make more readable, to a point, as did thickness”

P51: “During the font (toggle) test, I found that I preferred fonts which were wider and more spaced

out over fonts which were narrower and spaced close together. Therefore, if I found myself able to

read faster over a sample text (without having to re-read it), I knew that this would be my preferred

text amongst each set of pairings.”

P54: “It’s a larger font that isn’t too dark.”

While this qualitative feedback provides general evidence that font preference is influenced by
size, it also hints at the possibility of character spacing, stroke width, and several other font at-
tributes. In our preliminary study [107], the two fonts that achieved the highest reading speed
were EB Garamond and Oswald. EB Garamond has the smallest x-height, and Oswald has the sec-
ond smallest width across all fonts in our study. This might be explained by the fact that smaller
fonts lead to a reduced reading span, which limit the magnitude of eye movements required be-
tween words and across lines [82]. These findings suggest a need to normalize font size to help
systematically compare the preference and effectiveness of different fonts by reducing the possible
confounds of perceived font size.

4.4 Perceptual Font Size Normalization Study

Wedesigned a perceptual study to correct for how the average participant perceives size differences
of fonts. While prior work proposes to normalize font sizes according to a particular attribute
(e.g., x-height [14, 21]), we take a crowdsourced approach to finding the attribute, per font, that
perceptually normalizes its size the best among four possibilities: matched (original size 16px),
x-height, height, or width, using Times at 16px as a reference.

4.4.1 Study Design. Participants completed a perception study to select the best normalization
method for each of our 16 study fonts and 4 tutorial fonts—used for practice sessions to familiarize
participants with our study (Georgia, Verdana, Raleway, and Comic Sans). Our interface presented
participants with two screens side-by-side, with the same piece of text rendered in two different
fonts (Figure 6). One of the screens always contained the reference font (Times), and the other
screen contained a target font. Participants could click to toggle between four possible settings of
the target font, one of which was the original font setting, and the rest corresponded to normaliz-
ing the font by x-height, height, or width. The four settings were shuffled per font, per participant.
After toggling through all the settings, a participant would click to select the setting most similar
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Fig. 6. To normalize font size, crowdworkers see a control (reference) font in one panel and a target font in
the other. They can toggle between four different target font settings, which corresponds to adjusting the
font size to match the reference in x-height, width, height, and original size (16px). The settings are shuffled
per participant. In this figure, Times is on the left, and Montserrat is on the right. Differences in effective
font size become especially apparent when the same piece of text is rendered in two different fonts side by
side.

in size to the reference. Participants could also swap the reference and target fonts, which facili-
tated quickly toggling back and forth between the fonts. There was also an option to change the
underlying text passage.
We recruited 61 participants: 23 via university mailing lists, 18 professionals ranging from de-

signers to engineers, and 20 crowdworkers from Amazon’s Mechanical Turk. We did not collect
demographic information for this study. Participants took, on average, less than 5 minutes to
complete this study. The participants from university mailing lists and the professionals were
provided a $5 Amazon Gift Card for completing the study. The university mailing lists consist
of undergraduate and graduate students and faculty interested in Human-Computer Interaction,
Computer Vision, and design.We recruited the professionals from an industry typography interest
group, where it is common for researchers and practitioners to recruit participants for studies. The
crowdworkers from Amazon’s Mechanical Turk were paid $0.50 for their participation, matching
the compensation used in similar tasks.

4.4.2 Results. The base font sizes for different fonts vary significantly (Figure 7). For instance,
EB Garamond is a smaller font, while Montserrat is naturally quite large. Comparing blocks of text
rather than individual words demonstrates how the size difference gets amplified (Figure 6). Previ-
ous articles that have mentioned the need to account for a font’s perceived size have indicated that
x-height should be the criteria used [14, 21]. However, our study results go against this common
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Fig. 7. When rendered at the same font size (“match size”), different fonts can have different perceived sizes.
Depending on the criteria used to normalize font size (matching the x-height, width, or height of a reference
font), the adjusted font size can vary drastically. Matching the height to the reference font was the most
common normalization method chosen by crowdworkers. However, the assumption that a single criterion
can normalize all fonts proves sub-optimal. We choose the optimal normalization strategy on a font-by-font
basis, as determined by a population of crowdworkers. For instance, Oswald was left at its original 16px size,
Montserrat was matched to Times by x-height, EB Garamond by width, and Avenir Next by height. Using
these features to normalize the font sizes resulted in the final adjusted sizes indicated at the bottom of the
figure, which perceptually are closer in size to Times at 16px.

wisdom and show that the preferred way to normalize a font actually depends on the font itself.
Figure 8 shows the normalization factor that a majority of participants picked per font. In most
cases, height was the most frequently-picked criterion. However, it is not always the best. In some
cases, the differences between the best normalization factor for a font and another normalization
factor can be quite large (Figure 7). Rather than choose a single normalization strategy for all the
fonts, we selected the most frequently chosen normalization strategy on a font-by-font basis, as de-
termined by the crowd. This resulted in the final normalized font sizes plotted in Figure 8. Despite
some of the fonts being reduced in size from 16px, their final sizes are still above the recommended
minimum font size for reading on a digital device [64].

Takeaways: There is not a single effectiveway to normalize a font’s size. Normalization strategies
depend on the font. Also, contrary to prior work, x-height is not always the best measure to use for
size normalization [21, 79, 113]. Our normalization strategy is font-dependent and perceptually-
motivated.We suggest that future work use this method to explore the impact of font upon reading
performance. We used the individually normalized fonts for our main study on reading effective-
ness, described next.

4.5 New Remote Readability Study Design Considerations

Our prior study [107] validated the interfaces, methods, and manipulation checks that we adopt
in the main study in this article. In summary, our new findings result in three major changes
from our previous remote readability study design [107]: (1) All font sizes are normalized based
on the results of our perceptual font size normalization study (Section 4.4). (2) The preference test
is a single double-elimination tournament instead of five smaller ones, to reduce the overall study
duration. (3) Participants read in their most preferred font, Times, Noto Sans, and two random
fonts. This provides the opportunity for every participant to read in their most preferred font, our
prior work’s most preferred and effective font Noto Sans, and the control font, Times.
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Fig. 8. Crowdworkers voted on which of three font size normalizationmethods (X = x-height, W =width, and
H = height) or original matched size (M) best matched the perceived size of Times at 16px. The chosen nor-
malizationmethod per font, according to majority vote, is listed under the column “optimal adjustment”. The
resultant change in px size per font from the chosen normalization method is listed under the column “font
size px difference”, with the final “adjusted size” in the leftmost column. The “adjusted” and “un-adjusted”
(original 16px) sizes can be visually compared for each font, which was used to render the same string “Re-
washington” to make the size differences more salient.

5 METHODS: MAIN STUDY ON READING EFFECTIVENESS

The motivation of the present study was to determine what gains in reading effectiveness are
possible by manipulating font choice alone, after controlling for perceived font size. To answer
this question, we ran experiments on hundreds of participants on Amazon’s Mechanical Turk,
assembling one of the largest datasets of reader behavior relative to font.

5.1 Procedure

5.1.1 Reading Content. In our prior work [107], we found differences in comprehension scores
when participants read in different fonts. To reduce the confounding effects of topic and question
difficulty, we worked with a reading specialist to carefully control the level and type of content
used for this study. Our reading specialist collected a set of 15 text passages from Project Guten-
berg,7 a repository of creative commons e-books. The passageswere chosen to span different topics
(history of science, biography, botany, etc.), with 12 non-fiction and 3 fiction passages. We believe
these easily digestible topics are indicative of what people might read during Interlude Reading.
Passages were curated down to 300–500 words, with minor adjustments to sentence structure

7https://www.gutenberg.org.
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and vocabulary to be at approximately an 8th-grade level (Lexile range8: 800–1200, Flesch score9:
60.5–79.8). The reading specialist also prepared 4–6 similar-level comprehension and inference
questions per passage. As such reading material has not previously been made available in the
public domain, we are releasing it along with our article for future reading studies.10 We selected
nine non-fiction and three fiction passages for the present study and further cut them down to
160–178 words. Then, we split each passage approximately in half to be presented across two con-
secutive reading screens, without breaking apart sentences (69–93 words each). This allowed us
to capture two measurements of reading speed per passage, to increase data robustness and allow
us to filter outliers (Section 5.1.3). We selected two multiple-choice comprehension questions per
passage, one corresponding to each half of the passage. In this way, participants would need to
read both halves of the passage carefully to answer both comprehension questions correctly. We
did not use inference questions for this study to keep the task difficulty more predictable.

5.1.2 Study Design. Participants could complete the study on a device of their choice: desktop
computer, laptop computer, tablet, or mobile device. Across participants, 35.5% used a desktop,
60.2% used a laptop computer, 2.3% used a tablet, and 2.0% used a mobile device. Our web server
detects a participant’s device using the commonly used library express-device.11 Participants be-
gan the study with a pre-survey asking a range of questions, including about demographics (age,
education, and native language), reading experience (frequency, type of content, and device of
choice), vision (normal/corrected), disabilities (learning or reading), state (under the influence of
drugs, medications, and alcohol), and environment (lighting, time of day). All Pre-Survey questions
are provided in Appendix D and all Post-Survey questions are provided in Appendix E.

After an instructional screen, participants proceeded to the practice phase, with short versions
of both the preference test and effectiveness test, to get acquainted with the study flow (Figure 9).
The first phase of the main study was a preference test, run as a double-elimination tournament
with 16 study fonts. The preference test was split into a competition block of 30 comparisons,
followed by a validation block of 6 comparisons, randomly selected repeat comparisons from
the competition block to measure a participant’s self-consistency. The average preference con-
sistency per participant was 72%. Participants used the toggle interface (Figure 4) for the pairwise
comparisons.
After the preference test, participants completed 10 rounds of the effectiveness test. Each round

consisted of reading a passage split across two consecutive reading screens (69–93 words per
screen), followed by two multiple-choice comprehension questions, and a mini questionnaire ask-
ing participants about their reading technique, as well as familiarity and interest in the topic matter
presented, using a 5-point Likert scale. Each participant read a total of two passages in each of five
fonts. Assignment of fonts to passages was randomized per participant. The five fonts used were
as follows: Noto Sans (best overall font in term of preference and effectiveness from [107]), Times
(commonly used as a baseline font [6, 16, 21, 28, 107]), the participant’s preferred font (from the
preference test), and two randomly-selected fonts out of the remaining 13 study fonts.12 As a result,
across the 10 rounds of Interlude Reading, each font was used for two different reading passages
(different topic, similar length). We recorded the time spent per reading screen and the responses
to the study questions. The study ended by showing participants: (i) The font that won the double

8https://hub.lexile.com/analyzer.
9http://www.readabilityformulas.com/free-readability-formula-tests.php.
10Available at https://github.com/virtual-readability-lab/tochi-paper-materials-towards-individuated-reading.
11https://www.npmjs.com/package/express-device.
12In cases where the participant’s preferred font was one of Noto Sans or Times, we would sample three, instead of two,

randomly-selected fonts out of the remaining 14 study fonts.
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Fig. 9. Apart from a pre-survey to gather demographic information and reading experience, and a practice
session, this study design consists of two distinct phases. In the first phase, participants complete a prefer-
ence test: a double-elimination tournament with 16 fonts, leading to 30 pairwise comparisons (competition
block) and 6 repeated pairwise comparisons (validation block). In the second phase, participants complete an
effectiveness test: 10 rounds of reading two passages (average 70 words each), answering twomultiple-choice
comprehension questions (comprehension test), and answering two additional questions about passage in-
terest and passage familiarity (mini questionnaire). The effectiveness test is run with five fonts: the winning
font from the preference test, Times and Noto Sans as common baselines, and another two randomly se-
lected fonts per participant. The study ends with a post-survey to evaluate the task’s difficulty and collect
familiarity ratings for the different fonts tested.

elimination preference tournament, i.e., their most preferred font, and their words-per-minute in
it; (ii) Their fastest font, and their words-per-minute in it; and (iii) An interesting fact about their
most preferred font. A post-survey asked participants about their familiarity with each of the 20
study fonts (including the 4 practice fonts), their experience with the toggle interface, their reac-
tion to their preferred font, and how effective they think their preferred font would be to read
in.

5.1.3 Data Pre-processing. We recruited 500 participants on Amazon’s Mechanical Turk. We re-
moved participants from the study’s data if they met one of the following exclusion criteria: (i) did
not submit pre and post surveys, (ii) did not self-report being “very comfortable” reading in English,
(iii) self-reported being diagnosed with any reading or learning disability, medical, or neurologi-
cal condition, (iv) self-reported being under the influence of any drugs, medications, or alcohol,
(v) had either of their words-per-minute (WPM) or reading comprehension scores outside the
normal distribution as computed using the interquartile rangemethod (IQR),13 or (vi) had their
preference consistency outside the normal distribution as computed using the IQR method.
To establish a range of reading speed indicative of Interlude Reading, we expand on Carver’s rec-

ommended range of 138–600WPM to account for standard error and remove any individual WPM
measurements outside the range of 100–650 WPM [25, 26]. Participants with an average reading
comprehension score below 0.67 were also excluded (threshold determined by IQR method). To
maximize the available data, WPM exclusions were applied to individual screens as appropriate.
This resulted in an incomplete blocked design, the sparseness of which is handled with appropriate

13We removed reading speed measurements outside of the 100–650 WPM threshold before applying IQR for data removal.
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statistical methods (Section 6). After this filtering (removing 30% of participants), the data of 352
participants were used for reporting the results of this study.

5.1.4 Participants. Participants took on average 35 minutes to complete this study and were
compensated $5 for their time. Of the 352 participants (46.1% female) that remained after data pre-
processing, ages ranged from 18 to 71 years (average = 33): 8 were younger than 20, 139 were in
their 20s, 132 in their 30s, 47 in their 40s, and 26 were older than 50. Data pre-processing did not
skew the data’s demographics. For example, after applying data pre-processing, participant’s age
distributions and education backgrounds remained relatively similar, see Table 1 in Appendix F.
Data pre-processing did not change the average age or minimum and maximum ages of our par-
ticipants. After applying data pre-processing, the gender breakdown changed from (45.7% female,
54.3% male) to (46.1% female, 53.9% male).
While all participants reported being “very comfortable” reading English, 22% of participants

were bilingual. In total, bilingual participants self-reported being able to read in 28 different lan-
guages. Participants reported reading using different devices for leisure or personal interest: 40.8%
reporting reading on Desktop, 60.9% on Laptop, 35.4% Tablet, 23.8% Kindle or other e-readers, and
73.9% Paper. The following percentages of participants read using these devices for work or study:
53.8% Desktop, 70.8% Laptop, 18.1% Tablet, 7.1% Kindle or other e-readers, and 56.1% Paper. Partic-
ipants reported reading articles written in English for leisure or personal interest: 56.1% Everyday,
7.1% Once a week, 31.7% 2–3 times a week, 2.8% Once a month, and 2.0% Less than once a month.
Participants reported reading articles written in English for work or study: 36.3% Everyday, 11.3%
Once a week, 35.1% 2–3 times a week, 7.1% Once a month, and 9.9% Less than once a month. Over-
all, our 352 participants read at different frequencies using a variety of devices for both work and
leisure.
While we aimed at recruiting a diverse pool of participants from the general population, the age

ranges of our demographics better represent the digital reading population. Our most common age
groups are readers in their 20s and 30s. When excluding readers under 18, the two most common
age groups for digital reading are the 18–24 age group, followed by the 30–39 group [36]. Prior
research from Pew Research has found that people aged 30–39 have the highest e-book usage [36].
Compared to older readers over the age of 65, readers under age 30 are readingmore digital content
due to its availability [27].

5.2 Evaluation Metrics

To compare fonts in terms of their preference and effectiveness, we computed the followingmetrics
for each font from the collected participant data.

—Win Rate: The percent of pairwise match-ups each font won during the font preference test.
— Elo Rating: Since the font preference test consisted of a double-elimination tournament, par-
ticipants did not make every possible pairwise comparison. To account for the strength of
each font in a pairwise comparison, an Elo Rating [42] was computed per font, per partici-
pant, with a starting value of 1500. Elo Ratings were averaged across participants to create
an average Elo Rating per font. See Appendix C for details.

— Elo Disagreement: This is the standard deviation across all participants’ Elo Ratings per font.
The greater the number, the less consensus there was among overall preference per font.

— Preference Consistency: The rate at which a participant’s current font preference given
a unique pairwise comparison matches their previous preference for the same pairwise
comparison.

—WPM: We measured reading speed in WPM computed as w×60
s

where w is the number of
words in a passage and s is the number of seconds spent reading the passage.
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— Speed Rank: Per participant, we compared their WPM on the five fonts they read in. We
treated this as an implicit pairwise comparison by sampling each pair of fonts out of the
five fonts used and tracked which font of the pair had the higher average WPM. Across all
participants, this produced a win percentage of each font against every other font, which
can be interpreted as a speed rank for that font over all other fonts.

— Comprehension score: We measured comprehension as the percent of questions answered
correctly. Each participant read two sets of passages per font and answered two multiple-
choice comprehension questions per passage (selecting out of three possible answers per
question). When we report comprehension score as a percentage, it is based on a total of
four questions per font, per participant.

6 RESULTS: MAIN STUDY ON READING EFFECTIVENESS

In what follows, we report our analyses of the Interlude Reading behaviors of 352 crowdsourced
participants, whose preference, reading speed, and comprehension were measured across different
fonts. Results for each font, averaged over all participants, and measured by the metrics defined
in the previous section, are presented in Figure 10. Next, we consider population-level results by
running a linear mixed effect model to look at how various independent factors (participant age,
font, topic, etc.) affect reading speed and comprehension. Recognizing that averaging across all the
participants can obfuscate finer trends in the data, we dig into individual differences to measure
the effects of font choice at the individual participant level.

6.1 Population-level Results

6.1.1 Model Design. To discover which factors influence reading speed and comprehension
across our whole population of participants, we ran a linear mixed effect model (LME). Since
any participant could potentially be shown any font, and all participants would be shown all pas-
sages, this model specifies participant ID and passage read as crossed random effectswith intercepts
per level of participant and passage, and constant slopes for both. Themodel specifies the following
as fixed effects: participant age, reading device, passage order, screen order, font, non-fiction status,
topic familiarity, topic interest, and font familiarity. Screen order refers to participants reading
each passage split across two consecutive screens.
Using all participant data (N = 352), we ran twomodels: one to assess the impact of the predictors

on reading speed, and another for comprehension. We also re-ran both models on the subset of
participants aged 35 and older (N = 118), owing to known differences in how older readers process
textual information [8, 10, 37, 39, 93, 116].

Effect sizes are reported as the R2
β
statistic for all significant effects, following Edwards et al. [41].

Briefly, traditional R2 is derived by comparing the total residuals of a fitted OLS regression model
against the residuals of a null model, usually containing only an intercept term. Similarly, R2

β

compares a fitted LME model against a null model in which all fixed effects are removed except
an intercept, and the random effects are retained (preserving the covariance structure and any
crossed/hierarchical relationships encoded in it). If the R2

β
formulation were applied to a univariate

OLS regression, it would in fact be equivalent to classical R2. Since a large share of the variance in
the outcome measure are dependent on the model’s random effects (here, the between-participant
differences represented by the participant factor, or the content/interest differences intrinsic to
the passage factor), R2

β
estimates for fixed effects will usually be relatively small. Therefore, for

clarity, we also report unstandardized effect size measures (i.e., group differences and other raw
measures).
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Fig. 10. Results from our large scale font study. Noto Sans consistently performed highly across preference
(highest win rate and Elo Rating). “Most preferred” refers to the total number of participants for whom the
selected font was the absolute favorite. “Win Rate”, “Average Elo Rating”, and “Elo Disagreement” refer to the
toggle-based font preference test. A high disagreement scoremeans participants had highly varying opinions
of the font. “Font Familiarity” was a 5-point Likert scale question from the post-survey (5 = very familiar).
“WPM” and “Comprehension” refer to the reading effectiveness test. “Speed Rank” is the percentage of times
an individual participant had higher WPM in a given font compared against every other font they read in.
Notably, Speed Rank is first computed on an individual participant basis, before being averaged across all
participants. The top six and bottom six fonts according to each metric are color-coded blue and orange,
respectively (with darker colors at the extremes).

Please refer to Appendix G for additional details; and to Appendix H for additional results not
covered in this section.

6.1.2 Reading Speed Across all Participants. Taking all participants into account, reading speed
differed significantly by passage read, with non-fiction passages read 11.6 WPM faster than fic-
tion (p = .008, R2

β
= 0.004). Self-reported topic familiarity also significantly affected reading speed

(p < .001 and R2
β
= .002). Passage topics rated as least familiar to the participant had an aver-

age reading speed of 271 WPM, while the highest rated had a speed of 283 WPM. Order of
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presentation significantly affected reading speed (gaining 1.59 WPM with each subsequent pas-
sage, p < .001, R2

β
= .002), as did screen (second screens were read 39 WPM faster than first screens,

p < .001, R2
β
= .043). The order of presentation for all passages and fonts was randomly counterbal-

anced across participants to prevent order effects from confounding outcomemeasures (see Appen-
dix C). Reading speed decreased significantly with participant age (−1.51 WPM per year, p < .001,
R2
β
= .019).

The significant effects found by the LME indicate when reading speed trended in a consistent
direction across participants—e.g., despite our efforts to control the difficulty of passage contents,
some passages were generally read faster (conversely, slower) across the population. However,
font, reading device, and self-reported topic interest were found non-significant by the LME anal-
ysis, indicating that for these factors, reading speed did not trend in a consistent direction across
the population. Regarding fonts, this means that there is not a set of consistently faster fonts
(conversely, slower) across the population as a whole. This result hints at a need for looking into
individual differences (Section 6.2) to understand the potential for different fonts to increase speed
for different people.

6.1.3 Reading Speed Across Older Participants. Across the older participants (age ≥ 35), we
found a similar pattern of results, with the following differences: Font was found to significantly
affect reading speed (p = 0.01, R2

β
= .005). Notably, the effect of age increased to −2.6 WPM per year

(R2
β
= .039). Figure 11 visualizes reading speed differences between younger and older participants

per font. While EB Garamond and Open Sans stand out as the best and worst performers among
older participants, the significant effect of font remains even when excluding these fonts from the
data. These results suggest that for older participants we can make population-level recommen-
dations, as reading speeds trend in a consistent direction depending on the font. However, as we
will discuss in later sections, age is only one factor affecting reading speed. The largest gains in
reading speed are evident when someone reads in their more optimal font.

6.1.4 Reading Comprehension. Reading comprehension scores were relatively flat as the me-
dian was 90%, the 25th and 75th quartiles were 85% and 95%, respectively, and the minimum score
was 70%. Overall, 24% of participants answered all questions correctly. There was minimum varia-
tion in scores, so there is lower sensitivity in the hypothesis testing for the comprehension scores.
Across all participants, reading comprehension was significantly affected by self-reported topic in-
terest (85.7% correct for passages rated least interesting vs. 93.5% correct for the most interesting;
p < .001, R2

β
= .019) and non-fiction content (89.6% comprehension for non-fiction vs. 94.9% for

fiction; p = .013, R2
β
= .018), though the passage itself was non-significant. No other factors were

significant. Among older participants, topic interest was significant (p < .001, R2
β
= .018), as was

non-fiction content (90.4% comprehension for non-fiction vs. 97.1% for fiction; p = 0.005, R2
β
= .028).

Additionally, age was significant (p = .047, R2
β
= .002), as was device (p = .011, R2

β
= .008). However,

given the lopsided nature of the binary outcome, as well as the lopsided distribution of devices, we
urge caution in interpreting the effect of device.

6.1.5 Takeaways: Some of the trends that hold across the entire participant population include
non-fiction passages being read faster but achieving lower comprehension scores than fiction pas-
sages. Topic interest affected comprehension, while topic familiarity affected reading speed. Par-
ticipants generally read faster as the task progressed, increasing significantly from the first screen
in a font to the second screen in the same font and increasing throughout the experiment with
each subsequent passage. These results point to a learning effect. Reading slowed down as the
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Fig. 11. Mean reading speed (inWPM) per font across participants separated by age, with participants under
35 in blue, and all others in orange. Error bars represent ±1 within-participant standard error. Group sizes
vary by font exposure, but total N = 118 for older participants and 234 for younger. Fonts are ordered by
mean reading speed within the older group. We see that the younger group read faster on average across
many of the fonts, but the older group read faster in EB Garamond and Montserrat.

age of participants increased, especially after 35 years. Regarding fonts, when considering just
the older participants (age ≥ 35), we can observe specific fonts affect reading speed, making it
possible to provide some initial recommendations for this age group. For instance, EB Garamond
and Montserrat were faster fonts on average, while Avant Garde and Open Sans were slow fonts.
Someone’s age might be one of many factors affecting how fast or slow an individual reader reads
with a specific font. For example, across all our participants, fonts do not affect people in the same
way, and a font that is effective for one person is not necessarily effective for another person. This
observation brings us to our next section, where we scrutinize the individual differences among
fonts and participants.

6.2 Individual Differences Results

Results from the population-level analysis demonstrated that while certain factors are more likely
to affect participants’ reading effectiveness similarly (e.g., non-fiction passages being read faster, on

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 38. Publication date: March 2022.



38:26 S. Wallace et al.

Fig. 12. Participants are divided into quartiles based on their average WPM. This figure shows that the
fastest readers also had the biggest gains in reading speed from their slowest to their fastest font, with
average improvements inWPM indicated beside each bar. This shows the potential of font to have significant
impacts on reading efficiency.

average, than fiction passages) when it came to fonts, different fonts affected the reading speeds of
participants in different ways. Moreover, while we could make some initial font recommendations
for participants over 35 years, the same could not be said of the population as a whole. This latter
finding points to the need to individuate fonts because no single font can benefit all readers.
Importantly, because we observed minimal differences in comprehension scores across partici-

pants and removed unreliable WPMmeasurements (outside of 100–650 WPM), differences in read-
ing speed across fonts do not indicate participants were skimming the material. Instead, they were
able to get through it faster while achieving comparable comprehension scores. In other words,
the large differences in observed reading speed per individual are due to font (Figure 12).

6.2.1 What Gains in Reading are Achievable by Font Choice? At the individual level, there ap-
pear to be effective fonts for participants(Figure 15). Participants read 14% faster in their fastest
font (314 WPM, on average) compared to their most preferred font (275 WPM, on average). Most
impressively, participants read 35% faster in their fastest font compared to their slowest font (232
WPM, on average) out of the five fonts tested.

To checkwhether these differences in reading speed are significant and ascribable to the font, we
measured the effect size using Cohen’s d. Disclaimer: we are somewhat stretching the applicability
of a Cohen’s d analysis for this data (given the within-participant analysis, lack of independence,
and few data points), so the following results are to be interpreted more of as a rough sanity check.
For each participant, we have four reading speed measurements per font,14 since a participant
read two different passages in the same font (at two random points in the experiment), with each
passage split across two consecutive screens. For each participant, we compare the reading speeds
achieved with their individual fastest font to the reading speeds with their slowest font to compute
Cohen’s d. Figure 13 includes a histogram of Cohen’s d measurements across all 352 participants,
binned by effect size. For 76% of our participants, we found a large effect size (Cohen’s d > 0.8) of
font on reading speed; for 94% of participants, the effect size was medium-large (Cohen’s d > 0.5).
In other words, font choice is indeed driving the effects we are seeing on reading speeds at the
individual level.

6.2.2 Using Speed Rank to Interpret Faster Fonts for Individuals. Since only Times and Noto
Sans were read by all participants, we cannot study which fonts were commonly the fastest or
slowest across individuals. However, we can focus on the Speed Rank metric (Figure 10), which
compares participants to themselves. The Speed Rank measurements for all of our fonts except
for Avant Garde, range from 45% to 59%, indicating there is no single font that all participants

14In some cases, we have fewer than four measurements per participant and font if the reading speeds on particular screens

were filtered out as outliers during the data preprocessing; for instance, if the speeds were outside the range of normal

reading.
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Fig. 13. This histogram bins the effect sizes computed using Cohen’s d when comparing the fastest and
slowest font per participant. Only one participant did not show at least a small effect size when considering
reading speed as a function of font.

read consistently faster with. Among our 16 fonts, there is no scenario where a single font has an
exceptionally low Speed Rank yet high averageWPM. The Speed Rank for 11/16 fonts ranges from
45% to 52%, indicating that different fonts increase reading speed for different people.

The following results use our Speed Rank metric to help eliminate noise and individual dif-
ferences by comparing individual participants’ achieved reading speeds on pairs of fonts rather
than considering absolute reading speeds. Four fonts had the highest Speed Rank, greater than
55%, Franklin Gothic, Calibri, Oswald, and Monsterrat (i.e., they were faster than the other fonts
they were compared to more than half the time). Stylistically these four fonts differ greatly
(Figure 3). For example, Monsterrat and Oswald have noticeably different stroke widths. Monster-
rat had the tallest x-height among our fonts. In the past, typographers have designed fonts with
taller x-heights to increase readability. For example, typographers designedGeorgia andVerdana to
have a taller x-height than Times New Roman [21]. Oswald and Franklin Gothic have condensed
character spacing, which has been shown to increase reading speed in some studies [11, 100].
Calibri is a familiar font to most, being the default font in Microsoft Word and Excel. Participants
might read faster on average in Calibri due to their familiarity with the font. This relationship
between font familiarity and speed has been hinted at in previous research [9].
Speed Rank helps explain why relying on averages across a population might not be the most

accurate representation of a font’s effect on reading speed. It is also an additional metric to help
interpret our reading speed results, which do contain some variance due to our between-subjects
study design. For example, EB Garamond was the fastest on average at 312 WPM. However, in-
dividual participants only read faster in it 48% of the time. This indicates that participants in our
study who read using EB Garamond were generally faster readers. Utopia is another font with a
lower Speed Rank (45%) despite having a similar average WPM to most other fonts. In contrast,
Open Sans was the slowest font on average at 254 WPM, while individual participants read faster
in it 51% of the time. Poynter Gothic and Roboto also displayed similar relationships between
Speed Rank and average WPM. These discrepancies combined with the large effect sizes reported
in this study show the need for the effect of fonts to be studied per individual. It is possible for
individuals to experience large gains in reading speed regardless of their baseline speed. In fact,
the fastest readers in our study demonstrate the gains possible when reading in their optimal font
(Figure 14).

Of the five fonts, all participants read in Times and Noto Sans as baselines. We observed 87
unique font pairings during the reading speed tests, excluding Times and Noto Sans. However,
different pairs had different sampling rates: 38 of these pairs appeared less than five times in our
data. In contrast, three of the pairs (Arial vs. Calibri, Arial vs. Roboto, and Calibri vs. Roboto)
appeared over 100 times each. This probably occurred because the participants generally preferred
these fonts. See Tables 20, 21, and 22 in Appendix J, for the number of observations per font and
unique font pairs during the reading speed tests. Due to this uneven sampling of pairs, we can
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Fig. 14. The fastest readers (top quartile) show the potential that a single manipulation, font, can have on
reading speed. Each row represents one participant, with the reading speeds achieved in five different fonts
plotted as color-coded circles: preferred font (black), Times (blue), Noto Sans (yellow), and another two-three
randomly-selected fonts (grey). On the left-most of the figure are the slowest fonts for each participant, and
on the right are the fastest. The horizontal distance between the two ends is the speed increase achievable
by manipulating font. There is no one font or manipulation (preference) that can determine an individual’s
fastest font.

expect some noise in the resulting speed rank measurements. Our study design balanced the study
length and amount of conditions we could compare. Future studies can build on our work by
focusing on a subset of these fonts and a within-subjects experimental design.

6.2.3 Which are the Highly Rated Fonts? Our large study features the first font preference test
comparing fonts, normalized by size based on participant perception. Noto Sans and Times were
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Fig. 15. This figure contains another view of the data from Figure 14, zoomed out and replicated four times
to show that different participants read fastest using different fonts. The label at the top of each plot is
one of the study’s conditions for reading speed: a participant’s most preferred font, Noto Sans, Times, and
“other” contains the other fonts participants read in. Highlighted with a black line are all the participants for
which the labeled font was the fastest. For example, each black horizontal line in “preferred” corresponds to
a participant whose most preferred font was their fastest. In the next two plots, we highlight participants
whose fastest fonts were Times and Noto Sans, respectively. The length of each line corresponds to the
speed increase between a participant’s slowest and fastest fonts. Participants are sorted by their max reading
speeds (fastest readers up top).

each chosen by 52 (15% of all) participants as the overall winners in the preference tests (Figure 10,
“Most Preferred”), with Avenir Next, Helvetica, Calibri, EB Garamond, and Arial also performing
favorably according to the preference metrics. Nevertheless, every single font was the preferred
font of at least three participants. This points to considerable diversity in font preferences across
individuals.
Another indication of diversity in preferences are the inter-participant disagreement scores

(Figure 10, “Elo Disagreement”). For instance, while Times and EB Garamond were highly rated
fonts overall, they split opinions across participants, some of which consistently voted them up
(correspondingly, down) in the preference tests. On the other hand, Open Sans was generally lik-
able based on its pairwise font comparisons and the low inter-participant disagreement scores.
Controlling for size generally led to smaller fonts (Times, EB Garamond, Helvetica, and Calibri)

performing consistently better than in our previous study [107]. As a notable example, Times,
which was in the bottom five fonts according to Elo Rating in our previous study, is in the top five
fonts in the present study. In contrast, participant preferences for Noto Sans were relatively stable
across both studies. It was in the top five fonts for 80% of participants in our previous study and
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77% of participants in the present study. Overall, with the highest win rate and average Elo Rating,
it was the most preferred font.
As in our previous study, familiarity was not predictive of font preference. Participants were

familiar with their recommended font only 52% of the time. Pearson’s Correlation shows only a
small effect between font familiarity and Elo Rating per participant (r = 0.18, p < 0.05). The most
preferred font, Noto Sans, was also among the least familiar fonts to participants.
Please refer to Appendix I for additional results on how dwell time and font familiarity affect a

participant’s font preferences.

6.2.4 Is People’s Preferred Font their Most Effective Font? Our study explicitly considers effec-
tiveness, measured using WPM and comprehension. However, since comprehension is relatively
flat, we look at reading speed only. Overall, participants read the fastest in their most preferred
font 20% of the time, but they also read the slowest in their preferred font 20% of the time (out of
five total fonts tested per participant), which is precisely at chance level. They also read in their
preferred font at an average WPM.
Participants read faster in their most preferred fonts than in Times 50% of the time, and faster

than in Noto Sans 51% of the time. In other words, participants do no better or worse, on average,
by reading in their preferred font. These findings run contrary to participants’ beliefs: 73% of
participants believed their most preferred font would also be their most effective font to read
in. Times and Noto Sans, which were generally preferred fonts, were not consistently effective
fonts across participants. Prior work has shown a similar dissociation between preference and
reading speed. For instance, Boyarski et al. found that while participants expressed a preference
for Verdana, they read faster with Georgia [21]. Our work builds on this prior finding by studying
and reproducing this relationship across a much wider collection of fonts.

6.2.5 Takeaways. We found that different fonts are effective for different people, leading us to
believe that custom reading experiences can help people read more effectively. Nevertheless, some
fonts, including EB Garamond andMontserrat, tend to increase the reading speeds of readers older
than 35 years. For other decisions on font choice, please refer to Figure 10, which includes some
performance metrics across all the fonts in our study. For instance, Noto Sans, Times, and Calibri
performed quite highly on preference and effectiveness (reading speed and comprehension). Im-
portantly, there was not a single font that increased reading speed for everyone. Our results show
a considerable spread in both preference and effectiveness for specific fonts across individuals.
Furthermore, our results indicate that neither preference nor familiarity with a font can predict
reading speed. Despite this, we witnessed a 35% increase in reading speed, on average, when com-
paring a participant’s fastest font to their slowest font of the five individual fonts tested.

7 DISCUSSION

7.1 Takeaways

Here, we summarize the takeaways for the investigations presented in this article.

— Our results show that some fonts, including EB Garamond and Montserrat, tend to increase
the reading speeds of readers older than 35 years, on average; however, such recommenda-
tions can not be made for the general population.

—While fonts and typographic considerations generally matter more for older participants,
starting at age 35 in our data, we observe larger reading speed gains when accounting for
individual differences per font per participant.
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—Different fonts are effective for different people, leading us to believe that custom reading
experiences can help people read more effectively. By designing tools to match individuals
to their best font, individual readers can experience large gains in reading speed.

— Preference � effectiveness. People do not knowwhat is good for them in terms of font choice
for reading.

— Preference for fonts is personal. People differ in what they prefer.
— Familiarity with a font does not drive preference, and has a small effect on reading speed. A
font need not be chosen for an application just because people may be used to seeing it.

— A single size does not fit all fonts. If an application has a few font options for the same piece
of text, then each font needs to be adjusted in size according to the font’s characteristics.

—When normalizing fonts based on font attributes, x-height is not the only option, nor was it
the most common option selected based on participant perception.

7.2 Toward Individuated Reading Experiences

Instantaneous reader improvement is the promise of good information design [12, 45, 52, 115].
Information design, the process of optimally formatting the elements of the page to convey infor-
mation, has historically been relegated to professional practitioners designing for everyone. This
is because publishing technologies have historically focused on publishing one document in one
format. While it may be simpler to provide everyone a slight boost in performance, individuat-
ing or personalizing participant experiences can augment human performance even more. Our
results indicate fonts exist that can help readers above the age of 35 read faster. However, the idea
that finding the fastest font per individual shows more promise for participants regardless of their
age. The large effect sizes per person we report point to the potential for personalized reading
experiences to help participants overcome the ever-growing burden of information overload. In-
formation design can affect different areas of our lives, from understanding financial documents
to voter registration or even reading for pleasure.
Reading technologies are presently shifting control of information format, shifting it from pub-

lisher to reader. Microsoft’s Immersive Reader15 allows the abstracting and reformatting of all text
on a webpage [61]. E-book technologies include options to reflow typographic and page design
in the moment. Now, even historically static digital documents are receiving similar capabilities.
Adobe Acrobat Reader using LiquidMode can reflow a PDF to the desired format, even for scanned,
optical character recognition (OCR) enriched documents, potentially allowing the entirety of
the written word to be flexibly reformatted to suit the needs of the reader [51]. However, this
growing ability for applications such as Liquid Mode or Mozilla Firefox’s Reader View to automat-
ically reflow text does not allow them to manipulate text based on the reader’s needs [57]. Efficient
evidence-based matching of the reader to specific fonts is a scientific and technological challenge.
Future research should develop innovations to help match people with their most effective font,
similar to matching someone with their most effective prescription to improve their vision.
Our results indicate that readers’ preferences do not predict their fastest fonts to read in. If

someone does not know what they need, perhaps a system could provide it. In our work, famil-
iarity or preference with specific formats had a limited effect on reading speed. There is also
no one-size-fits-all solution that emerged to improve reading speed for all readers. Matching a
reader to information design that can deliver substantial benefit is presently time-consuming, and
no theoretical or computational model exists to assist. Happily, studies with a large participant
pool point to how to leverage a big data approach to resolve the individuation challenge rapidly,
as previously successfully undertaken in high individual difference contexts such as voice and

15https://education.microsoft.com/en-us/resource/9b010288.
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handwriting recognition [1, 60, 90]. Theoretical foundations will be essential to this approach,
and we find the beginnings of these in existing legibility, readability, communication, and vision
science work [48, 93, 107, 108, 117]. Computational models will likewise be necessary, and what
little work exists here provides useful foundations for the geometry, if not the utility, of fonts and
typography [9, 55, 101, 114].

Our results provide evidence for font’s vital importance to readability and provide a possibility
to help reduce information overload. Our results show the potential importance of individuation to
improve reading speed. Building on prior work, we can confidently recommend that tailoring con-
tent to each reader will ultimately improve readability for all. Secondly, our results show that age
might be an essential factor to consider when individuating font choice to increase reading speed.
Third, we built a new understanding of the role of preference, which does not impact effectiveness
but is personal and underscores the need for individuation. Fourth, we provide a new method to
rethink size normalization between fonts based on human perception. However, there is a growing
need for new research at the intersection of these contributions. Our results do not cover every
possible font combination or multiplicative sets of design manipulations per font when consider-
ing additional participant demographics and languages. Researching this information design space
will require collecting additional data to create new theoretical and computational models for indi-
viduating design. Understanding what individual factors drive beneficial information design could
deliver new impacts to reduce information overload.

7.3 Limitations and Future Work

Participants: While we intended for the paid crowdworkers recruited for our main study to act
as a general population sample, our participants’ demographics (particularly ages) might not be
entirely representative for several reasons. First, the age distributions of our participants closely
resemble those of the digital reading population, see Section 5.1.4. Second, prior research shows
that paid crowdworkers on Amazon’s Mechanical Turk are more diverse than standard Internet
and American college samples [22], and sample composition varies dynamically based on study
topic, task complexity, recruitment materials, and the time of day the study is made available [73].
One approach to increase the diversity of the sample is to recruit participants frommultiple crowd-
sourcing platforms such as Prolific, Crowdflower, andUserTesting and potentially supplementwith
unpaid voluntary participation [53, 57, 106, 109, 110]. In addition, only 0.4% of our participants had
less than a high school education compared to the national average of 9.8% for people age 18 and
over, see Table 1 in Appendix F. Future work should address these populations that were difficult
to recruit in our remote opt-in readability studies.
Our paid crowdworkers specifically chose to participate in our readability studies. This self-

selection bias may leave out participants who are not interested in reading or improving their
reading. Most of our participants were in their 20s and 30s, and we specifically excluded partici-
pants who reported any learning or reading disabilities (due to small samples). Because age and
ability differences may exert some of the strongest effects on reading outcomes [8, 10, 37], we rec-
ommend more targeted recruiting, to systematically increase the number of samples at different
age ranges. In the future, our reading studies can be extended to additional specialized populations
to evaluate our results’ generalization in cases where themost significant effects of font choicemay
be achieved.
Language: Our reading passages are in English, and data only includes participants who self-

reported being comfortable reading English, while being located in the United States. Thus, our
results are not cross-cultural. Future work could extend our methods to study how font and lan-
guage can affect readability in different languages, as well as looking at second language learners.
Such efforts will require (sourcing or creating) a new set of properly leveled reading materials with
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corresponding comprehension questions, which in our experience was the biggest initial barrier
to running readability studies.
Controlling for Visual Font Size: A limitation of conducting our remote readability studies is the

variations in the physical size of screens across devices, participants’ visual angle, and varying font
size across monitor types. Prior in-lab readability research used consistent monitor sizes, and they
also used smaller point sizes for fonts because the pixel densities of physical monitors were lower
than they are now. For example, the visual size of fonts rendered at 10-point size in studies in the
late 1990s and early 2000s will look smaller on today’s monitors [13, 21]. Our remote readability
methods trade the internal validity of in-lab studies by studying readers in their everyday read-
ing environments. Prior work has suggested controlling for participants’ visual angle or stimuli
for remote readability studies on desktops [8, 120]. Another recent method to control for viewing
distance on desktops is the virtual chinrest [56]. We did not consider these methods because we
wanted to recruit participants regardless of their intended reading device. We also wanted to pro-
vide the reader the agency to behave naturally, similar to Chatrangsan et al. [28]. Ideally, future
work could manipulate font size per participant to ensure the physical font size is similar across
all reading experiences and devices.
Font Familiarity: A participant’s familiarity with specific fonts is challenging to test. We showed

participants all 16 fonts used in the study and asked them to self-report their familiarity with each
using a Likert scale. Since each font name was rendered in its own font, it is not clear whether
participants indicated their familiarity with the font’s name or its visual appearance. Future work
should address the subtle relationships between participants and their familiarity with, recogniz-
ability, and everyday exposure to specific fonts.
Measures of reading speed: Our calculation of reading speed was based on when participants

clicked to move to the next study screen. While we took measures to only capture data points that
fell within the target range of expected reading speeds, our calculation is rough and can introduce
noisy data. Future remote studies can consider eye movements or voice recordings for more pre-
cise reading speed estimates, but will need to evaluate how these additional measurements might
interfere with natural reading. Suppose future studies want to focus on reading speed. In that case,
we recommend using easier passages, for example, 8th-grade level reading passages, since using
more difficult passages can introduce a speed and comprehension trade-off [105].
Choice of fonts: Post-hoc discussions with a typographer revealed nuances regarding font com-

parisons. Specifically, not all of our study fonts were designed to display body text on digital de-
vices. For instance, Franklin Gothic was designed for printing newspapers, Oswald is a popular
font for headings, and Noto Sans was specifically optimized for reading on digital devices with
small screens. For a fair comparison, future studies can specifically consider fonts optimized for
digital devices.
Variable fonts: Our work compares fonts that differ among multiple properties, including stroke

weight, characterwidth, and optical size. To remove the confounding effects of size, we individually
re-normalized all fonts to a standard perceptual size. In the future, rather than comparing entirely
different font families, variable fonts can offer more fine-grained control over the weight, width,
and optical size parameters of a font. This study design choice creates opportunities to study the
anatomical differences of sans and sans-serif, humanist vs. geometric fonts in isolation of other
confounding factors. Also, variable fonts would allow researchers to measure how fine-grained
adjustments to the x-height, ascender, or descender individually contribute to effectiveness.
Reading formats: In studying fonts, there are multiple factors to control for. Future work could

investigate additional format differences beyond font, including character and line spacing, letter
spacing, and stroke width. All of these various font attributes could contribute to a perceived in-
formation density. As aforementioned, we recommend using variable fonts to enable an analogous
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comparison of weight, width, and optical size. This focus on variable fonts will enable experiments
to determine what anatomical parameters (category, classification, weight, width, or optical size)
contribute to effectiveness, preference, and familiarity.
Within-Subjects Study Design: Our goal was to study as many fonts as possible within a remote

setting. While Speed Rank provides a valuable metric to help provide different interpretations to
our results, a within-subjects design provides stronger analysis methods. Our pilot studies show
that having a single participant read in all 16 fonts in a remote setting is not advisable. Our pilot
studies evaluated how behaviors were affected when participants read six or eight fonts after com-
pleting the preference test. Participants were more likely to abandon the test in these pilot studies,
and their reading speed measurements dropped noticeably during the final reading rounds. Our
current between-subjects design for reading speed showed this drop-off did not occur, thus adding
validity to our results. However, because font preference does not predict effectiveness, even when
controlling for font size, we believe a within-subjects study design is more appropriate to study
reading speed differences in remote readability studies.

8 CONCLUSION

This work presented the first large-scale remote readability study considering font’s impact on
Interlude Reading performance, measured by words per minute and comprehension. Our remote
study design exchanges internal validity for applied validity by evaluating participants reading in
their naturalistic environments while controlling for font size based on human perception. Based
on evidence from our prior study that participants preferred fonts related to perceived size, we
normalized font size using a novel size normalization approach. Even with font size normaliza-
tion, we found that font preference does not drive effectiveness, despite participants believing it
does. While we found initial evidence that specific fonts might help readers over 35 years, the
main takeaway is that different fonts work best for different people. Finding the best font for an
individual is an open question worth exploring.
There is an extensive amount of excellent readability research focusing on reading on digital

devices from the past two decades. Prior research has made recommendations for future work to
overcome the challenges of conducting digital readability studies ranging from recruiting larger
or more diverse participant pools [17, 19, 28, 86], to selecting a larger or more diverse set of
fonts [16, 86, 88], to studying reading behaviors in the real world [9, 57, 111]. While our work
incorporates a number of these recommendations, future work is still needed to overcome our
methods’ limitations.
Over time prior studies have agreed and disagreed with each other’s results, see Figure 16 in

the Appendix. For example, our work and most prior research have found that font choice and
aspects of font size affect participants’ preferences [16, 28, 31, 86, 107]. In contrast, there is a article
that did not replicate this finding [19]. Some researchers have also found that font choice effects
reading speed [5, 6, 28, 86], while others have not [16, 17, 21, 107]. Prior research is also split
on the relationship between font size and reading speed, with some work showing that font size
does affect reading speed [6, 16, 28, 88], while others work showing it does not [17, 19, 31]. Even
Boyarski et al.’s seminal study found mixed results when comparing different factors [21]. It is
possible to attribute the cause of these contradictions to a multitude of factors ranging from the
ever-evolving font choices, device types, demographics, and digital technologies. We believe these
contradictions do not invalidate any one research result. Instead, they reinforce the complexity
inherent in studying digital readability. This observation provides further evidence that reading
experiences need to be individuated to help as many readers as possible. We hope that future
researchers can expand on our remote readability methods to improve their internal validity and
compare their results directly and empirically with in-person methods.
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Our pattern of findings highlights an opportunity to augment reading speed for individual adult
readers through different font choices. In comparison to participants’ average reading speed, the
average reader in our study could add 38 words a minute by changing their font. This increase
is equivalent to an additional four to five pages an hour given 500-words per page. When com-
paring a participant’s fastest font to their average reading speed, participants in the top quartile
for the delta added 79 WPM, or nine–10 pages an hour. In both cases, average comprehension
remains similar and high. In the context of Interlude Reading, this gain shows individual readers
could consume more information in limited windows. For example, suppose a news article, jour-
nal, or forum post is roughly 700 words, requiring around 2 minutes for an average reader. For this
hypothetical document length, an individual could read it 24% faster in their most effective font
while retaining normal reading comprehension levels. A reader could use these 30 seconds saved
to read comments or look at related posts. Social media companies, which thrive on the volume
of interaction, might find font as one mechanism to increase interactions. Our results point to a
future where individuation can boost reading speed for readers of various ability levels, showing
the potential to enhance readability for all.
The transformation of reading by digital devices is at the heart of our work and dictates the

subsequent work necessary. The high variability seen in our studies represents both a challenge
and an opportunity. While there is clear potential for improvement, understanding how to help
each individual in various reading contexts and tasks are unsolved, requiring new collaborations
and tools to solve. The potential impacts on individual reading efficacy highlighted here point to
a future where machines can help readers attain their full reading potential. We hope the present
reader and the multidisciplinary communities will continue to perform this work. Let us engineer
better reading for everyone.

APPENDICES

A FONTS USED IN THE MAIN STUDY ON READING EFFECTIVENESS

A.1 16 Fonts Used in Main Study Sections

Avenir Next (AvenirNextLTPro-Regular) Avenir_next.ttc
Arial Arial-webfont.woff2
Avant Garde ITCAvantGardePro-Bk.otf
Calibri calibri.otf
Franklin Gothic Franklin_gothic_medium-webfont.woff2
EB Garamond Garamond-webfont.woff2
Helvetica Neue HelveticaNeueLTStd-Roman.otf
Lato Lato-webfont.woff2
Montserrat Montserrat-webfont.woff2
Noto Sans Noto_sans-webfont.woff2
Open Sans Open_sans-webfont.woff2
Oswald oswald-webfont.woff2
Poynter Gothic Text poynter_gothic_text.otf
Roboto Roboto-webfont.woff2
Times Timr45w.ttf
Utopia utopia.otf

A.2 4 Fonts Used in the Practice Session

Comic Sans MS Comicsansms.ttf
Georgia Georgia.ttf
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Raleway Raleway-webfont.woff2
Verdana verdana.ttf

B FONT NORMALIZATION

The following are the algorithms used to normalize font sizes. When referring to str we use the
following string of Latin Characters: ABC...Zabc...z012...9.

ALGORITHM 1: How to compute the resultant width for a string of text.

float width = 0.0;

for (i : str.length()) do

float characterWidth = font.GetAdvancedWidth(glyphIDs[i]);

width += characterWidth;

end

Result: resultantWidth = width

ALGORITHM 2: How to normalize the target font’s width with the source font at 16px.

float Fs = 16.0;

float deltaForWidth = sourceResultantWidth / targetResultantWidth;

Result: newFontSize = Fs * deltaForWidth

ALGORITHM 3: How to compute the resultant height for a string of text.

float height = 0.0;

float min = +INFINITY;

float max = -INFINITY;

for (i : str.length()) do

Rect bbox = font.GetTightBoundingBox(glyphIDs[i]);

if (bbox.yMin < min) then
min = bbox.yMin

end

if (bbox.yMax > max) then
max = bbox.yMax

end

end

Result: resultantHeight = max - min

ALGORITHM 4: How to normalize the target font’s height with the source font at 16px.

float Fs = 16.0;

float deltaForHeight = sourceResultantHeight / targetResultantHeight;

Result: newFontSize = Fs * deltaForHeight

C EVALUATION METRICS

Elo Ratings have been used for rating chess players [42], in educational settings [77], and to help
mitigate cold-start problems in recommender systems [118]. By design, the Elo Rating system
aims at minimizing the differences between expected and actual outcomes of competitions, or in
our case, pairwise comparisons. Elo Rating is an appealing option to determine preference given
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small sample sizes [47]. This work does not intend to claim that Elo Ratings are better or worse
than its alternatives such as TrueSkill [49] and Rank Centrality [70].
For calculating ELO ratings for our fonts, we used the Elo Rating System in [42], started with

an initial value set at 1,500 per font, and ran the system with a K value of 64, which is higher than
usual to account for a small number of pairwise comparisons.

D PRE-SURVEY QUESTIONS

(1) What is your age? (in years)
(2) What is your gender?
(3) What is/are your native language(s)
(4) What other languages do you speak?
(5) What is your highest attained education level?
(6) Please describe you current occupation:
(7) Do you feel comfortable with reading articles written in English?
(8) How would you rate your speed as a reader?
(9) How would you rate your proficiency as a reader?
(10) Do you read to young children, under the age of 6?
(11) Have you ever been diagnosed with a reading or learning disability (e.g., dyslexia)? If yes,

which one and how long ago?
(12) Have you ever been diagnosed with any medical and neurological conditions (macular de-

generation, diabetes, ADD, memory disorders, LPD, dyspraxia, etc...) If yes, which one/s and
how long ago?

(13) Are you currently under the influence of any drugs, medications, alcohol, or other stimulants
(e.g., caffeine, nicotine) that may affect reading/attention? If yes, which?

(14) Do you have normal or corrected vision?
(15) If your vision is corrected, how was it corrected (glasses, lenses, surgery, etc.)?
(16) What device/s do you read on for leisure or personal interest?
(17) What device/s do you read on for work or study?
(18) What do you read for leisure or personal interest?
(19) What do you read for work or study?
(20) How often do you read English written articles for leisure or personal interest?
(21) How often do you read English written articles for work or study?
(22) Which device are you using right now to participate in this study?
(23) Please describe your current surroundings. For example, are you indoors/outside, by a win-

dow, under natural or artificial light, is the room light/dark, is the room small/large?

E POST-SURVEY QUESTIONS

(1) How mentally demanding was the font (toggle) test?
(2) How physically demanding was the font (toggle) test?
(3) How hurried or rushed was the pace of the font (toggle) test?
(4) How successful were you in accomplishing what you were asked to do in the font (toggle)

test?
(5) How hard did you have to work to accomplish your level of performance in the font (toggle)

test?
(6) How insecure, discouraged, irritated, stressed, and annoyedwere you during the font (toggle)

test?
(7) How much fun, satisfaction, and enjoyment did you feel during the font (toggle) test?
(8) Can you comment on any strategies you used to complete this study?
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(9) What do you think about the font that was recommended to you at the end of the task?
(10) Do you agree with the final font recommendation?
(11) Do you think you would use the recommended font for reading if you had a choice?
(12) How familiar are you with the recommended font?
(13) Do you feel your preferred font would also be your most effective font to read in?
(14) Please describe why you feel this way.
(15) Do you have any other comments about the study, did you find anything confusing?

F ADDITIONAL PARTICIPANT DEMOGRAPHICS

Table 1. This Table Shows the Differences in Participant Age Distributions and
Education Levels before and after Applying Data Pre-processing to

Remove Participants from Our Study’s Data

Age Distribution Before (N = 500) After (N = 352)

(ages 18–19) <20 2.0% 2.3%
20’s 40.8% 39.8%
30’s 37.6% 37.8%
40’s 12.7% 13.5%

(max age 71) >50 6.8% 6.6%

Education Levels Distribution

Less than High School 0.4% 0.6%
High School/GED 10.6% 13.1%

Some college 25.0% 24.1%
Associate’s degree (2-years of college) 11.2% 11.6%
Bachelor’s Degree (4-years of college) 40.4% 37.8%

Master’s degree 10.0% 9.7%
Doctoral degree 0.8% 0.9%

Professional degree 1.6% 2.3%

The education level distribution of our participants differs from the 18 and over US Population:

9.8% Less than High School, 27.8% High School/GED, 17.5% Some college, 10.1% Associate’s

degree (2-years of college), 22.1% Bachelor’s Degree (4-years of college), 9.5% Master’s degree,

1.3% Doctoral degree, and 1.9% Professional degree [23]. A small portion of our participants

have less than a high school education.

G LINEAR MIXED MODEL ANALYSIS

Our linear mixed effect model (LME) for reading comprehension used the same fixed effects
as the model for reading speed, except for screen order. This second LME omitted screen order
because the multiple-choice reading comprehension questions related to the passage as a whole
and not the first or second readings per screen.
Reading comprehension scores could have three values (0, 1, or 2 correct answers per passage),

with 84% of passages receiving a perfect score. Therefore, we converted the comprehension scores
to binary values (1 if completely correct, otherwise 0), and themodel was runwith a logistic linking
function.
All our LMEs were checked for multicollinearity by calculating the variance inflation fac-

tors (VIF) of all fixed effect predictors. All VIFs were in the range of 1–3, indicating negligible
multicollinearity [44].

Given our model’s significant order effects, we performed further checks to verify that passage
order and font order were sufficiently randomized across all participants. The mixed effect models
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that predicted presentation order from participant ID as a random effect and font (or passage) as
a fixed effect showed that both were sufficiently randomized. This shows the ordering was not
dependent on font or passage (X 2

14 = 17.8, p = 0.215 and X 2
9 = 7.45, p = 0.590, respectively).

In light of the dramatically different reading speeds observed for first and second screens, two
new models were run for first and second screen data separately. These models are the same
as the one described for WPM outcomes above, except for the removal of the screen order pre-
dictor in each. In the first-screen model, WPM was significantly affected by passage order (1.02
WPM/passage; R2

β
= 0.001; p = 0.009), reading device (p = 0.010; tablet = 213 WPM, phone = 223

WPM, laptop = 249 WPM, and desktop = 267 WPM), participant age (−1.2 WPM/year; R2
β
= 0.018;

p = 0.001), font familiarity (R2
β
= 0.002; p = 0.003), and topic familiarity (R2

β
= 0.003; p = 0.009). In

addition, there was a borderline significant effect of font (p = 0.057), but no significant difference
between fiction and non-fiction passages (p = 0.963).
In the second-screen model, reading speed was significantly affected by participant age (−1.87

WPM/year; R2
β
= 0.025; p < 0.001), passage order (2.4 WPM/passage; R2

β
= 0.003; p < 0.001), whether

the passage was fiction (fiction passages were read 26 WPM faster than non-fiction; R2
β
= 0.013,

p < 0.001), and topic familiarity (R2
β
= 0.002; p = 0.007). No other predictors were significant or near

significance.
Lastly, given the differential effect of font between the first-screen and second-screen models,

the full dataset model was re-run with font and screen order included in an interaction term. The
interaction was non-significant (p = 0.323), as was also the case among the cohort of older partici-
pants (p = 0.832), suggesting that font did not exert differential effects on reading speed between
the two screens.

H MODEL RESULTS

This section provides detailed reporting for all linear mixed effects models reported in the present
study, including the first-screen and second-screen models described in the previous section.
Conditional and marginal model R2 values are computed for the overall models following meth-

ods described by Nakagawa et al. [69]. The marginal R2 (R2
m ) estimates the variance explained by

the model’s fixed effects, while the conditional R2 (R2
c ) estimates the variance explained by fixed

and random effects together.
Effect size measures for significant model coefficients are calculated as R2

β
following Edwards

et al. [41], as described in themain reporting of results.We also report standardized betas alongside
these results as an alternative metric of effect size, though we caution that the interpretation of
standardized betas can be confounded if different predictors have markedly different underlying
variances.

Coefficient tests of significance are presented as Analysis of Deviance tables using Type II Wald
X 2 tests. This test was necessitated by the comprehension score tests’ use of general linear mixed
effect models with a binomial linking function. The same statistical testing framework is used
across all models for consistency.
Finally, intra-class correlations (ICCs) are reported to further describe the impact of each

model’s random effects on its outcome measure. We also include the results of checks for multi-
collinearity for completeness.

H.1 WPM: All Participants

The model specifies participant ID and passage read as crossed random effects with intercepts per
level of participant and passage, and constant slopes for both. The model specifies the following
as fixed effects: participant age, reading device, passage order, screen order, font, non-fiction status,

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 38. Publication date: March 2022.



38:40 S. Wallace et al.

topic familiarity, topic interest, and font familiarity. Screen order refers to participants reading
each passage split across two consecutive screens.
The model has an R2

m of 0.081 and an R2
c of 0.653, consistent with the idea that the model’s ran-

dom effects; here, representing inter-participant and inter-passage differences, account for much
of the variance in reading speed. The model has adjusted ICC of 0.622 and conditional ICC (ac-
counting for fixed effects) of 0.572.

Table 2. Analysis of Deviance Table (Type II Wald X 2

Tests) Showing the Effect of Model Predictors on
WPM Across All Participants

Fixed Effect X 2 k p

Participant Age (Years) 12.72 1 < 0.001 *
Reading Device 7.49 3 0.058
Font 19.38 15 0.197
Passage Order 30.47 1 < 0.001 *
Screen Number 699.79 1 < 0.001 *
Non-Fiction 6.93 1 0.008 *
Passage Familiarity 11.81 1 < 0.001 *
Passage Interest 0.21 1 0.645
Font Familiarity 2.96 1 0.086

*Represents that the result was statistically significant.

Table 3. Effect Sizes Measures Calculated as R2
β
and

Standardized β for All Significant Model Coefficients

Effect R2
β

Standardized β

Screen Number 0.0432 0.2125
Participant Age (Years) 0.0191 −0.1394
Non-Fiction 0.0040 0.0660
Passage Order 0.0021 0.0460
Passage Familiarity 0.0019 0.0456

Table 4. VIFs Calculated to Check for
Multicollinearity

Term VIF SE Factor

Participant Age (Years) 1.03 1.01
Reading Device 1.03 1.01
Font 1.30 1.14
Passage Order 1.01 1.00
Screen Number 1.00 1.00
Non-Fiction 1.02 1.01
Passage Familiarity 1.10 1.05
Passage Interest 1.08 1.04
Font Familiarity 1.28 1.13

A VIF of >5 is an indication of high multicollinearity.
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H.2 WPM: Older Participants

The model specification is identical to the one described in H.1, but the analysis considers only
participants with a self-reported age of 35 years or greater.
The model has an R2

m of 0.128 and an R2
c of 0.705, consistent with the idea that the model’s ran-

dom effects, here representing inter-participant and inter-passage differences, account for much
of the variance in reading speed. The model has adjusted ICC of 0.661 and conditional ICC (ac-
counting for fixed effects) of 0.577.

Table 5. Analysis of Deviance Table (Type II Wald X 2

Tests) Showing the Effect of Model Predictors on
WPM Across Older Participants

Fixed Effect X 2 k p

Participant Age (Years) 9.47 1 0.002 *
Reading Device 7.75 3 0.052
Font 30.61 15 0.010 *
Passage Order 13.20 1 <0.001 *
Screen Number 247.98 1 <0.001 *
Non-Fiction 9.40 1 0.002 *
Passage Familiarity 8.48 1 0.004 *
Passage Interest 0.83 1 0.362
Font Familiarity 1.10 1 0.294

*Represents that the result was statistically significant.

Table 6. Effect Sizes Measures Calculated as R2
β
and

Standardized β for All Significant Model Coefficients

Effect R2
β

Standardized β

Screen Number 0.0396 0.2025
Participant Age (Years) 0.0386 −0.2041
Non-Fiction 0.0064 0.0867
Passage Familiarity 0.0026 0.0550
Passage Order 0.0023 0.0481
(Font) Avantgarde 0.0016 −0.0426
(Font) Oswald 0.0013 −0.0381
(Font) Utopia 0.0008 −0.0311
(Font) Franklin Gothic 0.0004 0.0234
(Font) Calibri 0.0003 0.0232
(Font) Open Sans 0.0002 −0.0144
(Font) Helvetica 0.0001 −0.0105
(Font) Avenir Next 0.0001 −0.0098
(Font) Montserrat 0.0001 0.0097
(Font) Times 0.0001 0.0124
(Font) Lato 0.0000 −0.0073
(Font) Poynter Gothic Text 0.0000 0.0053
(Font) Garamond 0.0000 −0.0010
(Font) Noto Sans 0.0000 0.0013
(Font) Roboto 0.0000 0.0004
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H.3 Comprehension: All Participants

The model specification is identical to the one described in Section H.1, other than the following
differences. Screen Number is removed as a predictor because comprehension questions were asso-
ciated with whole passages and not their individual screens. The comprehension score outcome is
binarized as either perfect comprehension (84% of comprehension tests) or not. Lastly, the model
was run as a general linear mixed effects model using a logistic linking function.

Table 7. Variance Inflation Factors (VIFs)
Calculated to Check for Multicollinearity

Term VIF SE Factor

Participant Age (Years) 1.03 1.02
Reading Device 1.03 1.02
Font 1.31 1.15
Passage Order 1.02 1.01
Screen Number 1.00 1.00
Non-Fiction 1.08 1.04
Passage Familiarity 1.19 1.09
Passage Interest 1.11 1.06
Font Familiarity 1.25 1.12

A VIF of >5 is an indication of high multicollinearity.

The model has an R2
m of 0.098 and an R2

c of 0.215, suggesting that the model’s random effects
(participant and passage) account for relatively little of the variation in comprehension scores
compared to WPM. The model has adjusted ICC of 0.129 and conditional ICC (accounting for
fixed effects) of 0.116.

Table 8. Analysis of Deviance Table (Type II Wald X 2

Tests) Showing the Effect of Model Predictors on
Comprehension Scores Across All Participants

Fixed Effect X 2 k p

Passage ID 1.03 1 0.310
Reading Device 2.88 3 0.411
Font 15.57 15 0.411
Participant Age (Years) 1.39 1 0.238
Passage Order 0.49 1 0.485
Font Familiarity 1.70 1 0.192
Passage Familiarity 0.49 1 0.482
Passage Interest 47.95 1 <0.001 *
Non-Fiction 6.13 1 0.013 *

*Represents that the result was statistically significant.

Table 9. Effect Sizes Measures Calculated as R2
β

and Standardized β for All Significant Model
Coefficients

Effect R2
β

Standardized β

Passage Interest 0.0188 1.1456
Non-Fiction 0.0176 1.1707
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Table 10. VIFs Calculated to Check
for Multicollinearity

Term VIF SE Factor

Passage ID 2.72 1.65
Reading Device 1.06 1.03
Font 1.27 1.13
Participant Age (Years) 1.04 1.02
Passage Order 1.01 1.00
Font Familiarity 1.22 1.10
Passage Familiarity 1.16 1.08
Passage Interest 1.15 1.07
Non-Fiction 2.69 1.64

A VIF of >5 is an indication of high multicollinearity.

H.4 Comprehension: Older Participants

The model is specified exactly as described in Section H.3, but the analysis considers only partici-
pants with a self-reported age of 35 years or greater.
The model has an R2

m of 0.653 and an R2
c of 0.693, suggesting that the model’s random effects

(participant and passage) account for more of the variation in comprehension scores. The model
has adjusted ICC of 0.116 and conditional ICC (accounting for fixed effects) of 0.040.

Table 11. Analysis of Deviance Table (Type II Wald X 2

Tests) Showing the Effect of Model Predictors on
Comprehension Scores Across Older Participants

Fixed Effect X 2 k p

Reading Device 11.18 3 0.011 *
Font 12.11 15 0.671
Participant Age (Years) 3.96 1 0.047 *
Passage Order 1.79 1 0.181
Font Familiarity 0.00 1 0.978
Passage Familiarity 0.17 1 0.676
Passage Interest 18.87 1 <0.001 *
Non-Fiction 7.75 1 0.005 *

*Represents that the result was statistically significant.

Table 12. Effect Sizes Measures Calculated as R2
β
and

Standardized β for All Significant Model Coefficients

Effect R2
β

Standardized β

Non-Fiction 0.0279 1.9758
Passage Interest 0.0180 1.4524
(Device) Phone 0.0048 −0.7801
(Device) Laptop 0.0028 −0.6241
Participant Age (Years) 0.0017 −0.4710
(Device) Tablet 0.0000 −0.0657
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Table 13. Variance Inflation Factors (VIFs)
Calculated to Check for Multicollinearity

Term VIF SE Factor

Reading Device 1.20 1.09
Font 1.40 1.18
Participant Age (Years) 1.09 1.04
Passage Order 1.02 1.01
Font Familiarity 1.18 1.09
Passage Familiarity 1.24 1.11
Passage Interest 1.21 1.10
Non-Fiction 1.04 1.02

A VIF of >5 is an indication of high multicollinearity.

H.5 WPM: First Screens

The model specification is identical to the one described in Section H.1, but the analysis considers
only WPM measures collected from each passage’s first screen. Therefore screen order is dropped
as a predictor.
The model has a R2

m of 0.044 and a R2
c of 0.651, consistent with the idea that the model’s random

effects; here, representing inter-participant and inter-passage differences, account for much of the
variance in reading speed. The model has adjusted ICC of 0.635 and conditional ICC (accounting
for fixed effects) of 0.607.

Table 14. Analysis of Deviance Table (Type II Wald X 2

Tests) Showing the Effect of Model Predictors on WPM
on the First Screen Only, Across All Participants

Fixed Effect X 2 k p

Participant Age (Years) 10.41 1 0.001 *
Reading Device 11.36 3 0.010 *
Font 24.51 15 0.057
Passage Order 6.76 1 0.009 *
Non-Fiction 0.00 1 0.963
Passage Familiarity 6.77 1 0.009 *
Passage Interest 0.00 1 0.955
Font Familiarity 8.59 1 0.003 *

*Represents that the result was statistically significant.

Table 15. Effect Sizes Measures Calculated as R2
β
and

Standardized β for All Significant Model Coefficients

Effect R2
β

Standardized β

Participant Age (Years) 0.0184 −0.1392
(Device) Laptop 0.0126 −0.1186
(Device) Tablet 0.0080 −0.0919
(Device) Phone 0.0057 −0.0775
Passage Familiarity 0.0026 0.0519
Font Familiarity 0.0017 0.0420
Passage Order 0.0009 0.0296
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Table 16. VIFs Calculated to Check
for Multicollinearity

Term VIF SE Factor

Participant Age (Years) 1.03 1.01
Reading Device 1.03 1.01
Font 1.30 1.14
Passage Order 1.01 1.00
Non-Fiction 1.01 1.00
Passage Familiarity 1.08 1.04
Passage Interest 1.07 1.04
Font Familiarity 1.28 1.13

A VIF of >5 is an indication of high multicollinearity.

H.6 WPM: Second Screens

The model specification is identical to the one described in Section H.5, but considers only WPM
measures collected from each passage’s second screen.
The model has an R2

m of 0.051 and an R2
c of 0.686, consistent with the idea that the model’s ran-

dom effects; here, representing inter-participant and inter-passage differences, account for much
of the variance in reading speed. The model has adjusted ICC of 0.669 and conditional ICC (ac-
counting for fixed effects) of 0.635.

Table 17. Analysis of Deviance Table (Type II Wald X 2

Tests) Showing the Effect of Model Predictors on
WPM on the Second Screen Only, Across All

Participants

Fixed Effect X 2 k p

Participant Age (Years) 13.98 1 <0.001 *
Reading Device 3.74 3 0.291
Font 16.01 15 0.381
Passage Order 25.80 1 <0.001 *
Non-Fiction 14.32 1 <0.001 *
Passage Familiarity 7.16 1 0.007 *
Passage Interest 1.19 1 0.275
Font Familiarity 0.00 1 0.993

*Represents that the result was statistically significant.

Table 18. Effect Sizes Measures Calculated as R2
β
and

Standardized β for All Significant Model Coefficients

Effect R2
β

Standardized β

Participant Age (Years) 0.0254 −0.1646
Non-Fiction 0.0132 0.1229
Passage Order 0.0033 0.0584
Passage Familiarity 0.0017 0.0438
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Table 19. VIFs Calculated to Check
for Multicollinearity

Term VIF SE Factor

Participant Age (Years) 1.03 1.01
Reading Device 1.03 1.01
Font 1.30 1.14
Passage Order 1.01 1.00
Non-Fiction 1.03 1.01
Passage Familiarity 1.10 1.05
Passage Interest 1.08 1.04
Font Familiarity 1.28 1.13

A VIF of >5 is an indication of high multicollinearity.

I ADDITIONAL FINDINGS ON FONT PREFERENCE

In this section, we present a few additional findings from the toggle-based font preference test.
Can Dwell Time predict preference? We found that participants viewed the winning font 31%

longer, 3.5 seconds than the losing font. We conducted a Paired two sample t-test to show dwell
Time and font preference (t (15102) = 46.6, p < 0.01) have a predictive relationship in our scenario.
The fontswith the highest Elo Ratings, Noto Sans, andHelvetica, also had the highest average dwell
time per pairwise comparison. Qualitative evidence from the post-survey indicates participants
found it more difficult to pick between their most preferred fonts, but overall were satisfied with
the final font recommendation and agreed with it 88% of the time. This result aligns with previous
findings aligning fixation, measured via eye trackers, and satisfaction [17, 18].

Does familiarity drive font preference? This covers additional discussion around our results for
font familiarity and preference. Arial, Times, Calibri, and Helvetica were rated as most familiar,
on average, by participants on the post-survey (Figure 10, “Font Familiarity”). In contrast, Oswald,
Lato, Franklin Gothic, and Montserrat were rated least familiar. From the pre-survey responses,
we can confirm that if people mostly read novels and news for leisure, then the most familiar rated
fonts make sense. However, familiarity was not predictive of font preference. Participants were
familiar with their recommended font only 52% of the time. After controlling for font-size in this
study, Pearson’s Correlation shows little effect between font familiarity and Elo Rating per font
per participant (r = 0.18, p < 0.05). Similar to the preliminary study, the most preferred font, Noto
Sans, was also among the least familiar fonts to participants.
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J FONT MATCHUPS FROM THE READING SPEED TEST

Table 20. This Table Shows the Number of Reading Speed
Measurements used in Our Final Data Analysis Per Font

from Our 352 Crowdsourced Participants in the Main Study

Font Speed Measurements Speed Rank*

arial 467 44%
calibri 459 57%
roboto 225 50%
lato 96 50%
poynter gothic text 92 54%
avenir next 90 48%
montserrat 87 49%
franklin gothic 86 63%
utopia 85 44%
oswald 83 58%
garamond 82 50%
helvetica 81 53%
avantgarde 79 29%
open sans 68 46%

This excludes Times and Noto Sans, which every participant read. *This

version of the Speed Rank metric does not include comparing reading

speed measurements from a font with Times or Noto Sans.

Table 21. Reading Speed Matchups Part 1

Font 1 Font 2 Times Read How often was Font 1 faster?

arial calibri 218 40%
calibri roboto 107 54%
arial roboto 106 42%
arial avenir next 25 56%
avenir next calibri 24 46%
arial helvetica 23 39%
calibri helvetica 23 48%
arial eb garamond 20 50%
calibri eb garamond 20 60%
arial open sans 15 40%
poynter gothic text utopia 15 53%
arial oswald 14 57%
calibri open sans 14 57%
lato montserrat 13 54%
franklin gothic poynter gothic text 13 54%
arial utopia 12 58%
lato poynter gothic text 12 58%
lato oswald 12 25%

(Continued)
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Table 21. Continued

Font 1 Font 2 Times Read How often was Font 1 faster?

calibri utopia 11 64%
calibri oswald 11 64%
avantgarde montserrat 11 36%
avantgarde oswald 11 0%
calibri montserrat 10 60%
arial montserrat 9 33%
arial franklin gothic 9 44%
montserrat poynter gothic text 9 56%
avantgarde poynter gothic text 9 44%
avantgarde franklin gothic 9 11%
franklin gothic lato 9 33%
franklin gothic utopia 9 89%
arial avantgarde 8 75%
arial lato 7 86%
montserrat oswald 7 29%
helvetica lato 7 43%
helvetica poynter gothic text 7 43%
eb garamond poynter gothic text 7 43%
open sans poynter gothic text 7 29%
avantgarde calibri 6 50%
calibri franklin gothic 6 50%
calibri lato 6 33%
lato utopia 6 33%

This table features the number of times a participant read using Font 1 and Font 2 during the main study

featuring 352 paid crowdworkers. This table includes the more frequent pairings. Every participant read in

Times and Noto Sans. Excluding these two fonts, we observed 87 font pairings. However, different pairs had

different sampling rates: Participants compared 38 pairs less than five times, whereas 3 of the pairs (Arial vs.

Calibri, Arial vs. Roboto, and Calibri vs. Roboto) were compared over 100 times each.

Table 22. Reading Speed Matchups Part 2

Font 1 Font 2 Times Read How often was Font 1 was faster?

avantgarde utopia 6 50%
franklin gothic montserrat 6 67%
eb garamond oswald 6 67%
montserrat open sans 6 50%
lato open sans 6 67%
montserrat utopia 6 67%
avantgarde lato 5 40%
franklin gothic oswald 5 80%
avenir next utopia 5 60%
helvetica oswald 5 20%

(Continued)
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Table 22. Continued

Font 1 Font 2 Times Read How often was Font 1 was faster?

franklin gothic eb garamond 5 40%
avenir next poynter gothic text 5 0%
avenir next lato 5 40%
eb garamond lato 5 80%
avenir next montserrat 5 80%
avenir next franklin gothic 5 20%
franklin gothic open sans 5 80%
oswald poynter gothic text 4 75%
avantgarde avenir next 4 25%
helvetica utopia 4 50%
avantgarde open sans 4 50%
eb garamond utopia 4 50%
avenir next open sans 4 75%
calibri poynter gothic text 3 33%
lato roboto 3 100%
avantgarde eb garamond 3 0%
oswald utopia 3 0%
avantgarde helvetica 3 33%
eb garamond montserrat 3 33%
franklin gothic roboto 3 33%
eb garamond helvetica 3 33%
avenir next eb garamond 3 67%
roboto utopia 2 0%
avenir next oswald 2 100%
open sans oswald 2 0%
helvetica montserrat 2 50%
franklin gothic helvetica 2 50%
open sans utopia 2 100%
avenir next helvetica 2 0%
eb garamond open sans 2 0%
arial poynter gothic text 1 0%
oswald roboto 1 100%
open sans roboto 1 100%
avenir next roboto 1 100%
eb garamond roboto 1 100%

This table features the number of times a participant read using Font 1 and Font 2 during the main study featuring

352 paid crowdworkers. This table is a continuation of Table 21, and includes the matchups that occurred less

frequently.
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K COMPARING FONT USAGE AND RESULTS WITH PRIOR RESEARCH

Fig. 16. This figure summarizes the findings from related readability studies. It highlights if a readability
study found a relationship between Font and Reading Speed or Font Size and Reading Speed. This figure
shows that readability research has not reached a consensus over the past two decades on these various
relationships. * Our work found that fonts need to be individualized per participant to maximize possible
reading speed gains. ** The authors found a relationship between font choice and reading time. They did
not find any results when adjusting for reading accuracy, a metric they used that combines reading speed
and comprehension.

Fig. 17. This table features a summary of fonts used by our study and past readability studies. Some studies
featuring 1 font, like Rello et al. [88], only feature a single font because the study focused on font size and line
spacing. * Courier (or, Courier New), Georgia, and Verdana are fonts often featured in past studies but are
not a part of our main study. ** These two studies only used one font each, and to the best of our knowledge
did not disclose the fonts they used.
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