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1 INTRODUCTION

Automation, autonomy, and artificial intelligence (AI) are
technologies which serve as extensions of human ability, con-
tributing self-produced, non-human effort (see Figure 1). These
three terms encompass a set of computational tools that can
learn from data, systems that act in a reasonable, and even
human-like manner (Bolton, Machová, Kovacova, & Valaskova,
2018; Dash, McMurtrey, Rebman, & Kar, 2019; Shekhar,
2019). Computing of this nature has been pursued at least since
the 1950s, when Simon predicted machines “capable … of
doing any work a man can do” (Chase & Simon, 1973), and
today such envisioned technology appears under the moniker
Artificial General Intelligence (AGI). The desire for synthetic
intelligent creations has been a staple of human desire for
much longer, in various forms (Hancock et al., 2011; Schaefer
et al., 2015). While AGI remains, at present, just a dream.
A number of promising, and promised, future technologies
under development require machines to learn, understand, and
adapt to novel situations with at least the flexibility humans
exhibit, albeit in a more limited context. The major technology
underlying AI, machine learning (ML), is useful for engineering
such autonomy, as it can learn from external data input, either
with direct human oversight or without. In developing these
highly useful technologies, knowledge from human factors
and ergonomics (HF/E) can be of great use, especially to
designers charged with the difficult task of dovetailing humans
and machines in complex systems built to navigate sometimes
chaotic environments. Technology serves as a greater extension
of human ability each year, and optimal performance still results
from hybrid human–machine teams (Figure 1).

Automation, autonomy, and AI are all distinguished by
self-direction, and indeed it is arguable that these terms are
synonymous in intent. As such, in the present chapter we will
refer to them collectively under the moniker A3 (pronounced “A
cubed” /A kyübd). Herbert Simon (1965) named the technology
of automation in his writing, which retains its ancient meaning
“acting of itself” or “to rule one’s self.” The Latin roots of
the word “autonomy” likewise relate to “making one’s own
laws,” and so in this chapter we will use that term to indicate
the degree to which a system or machine is under its own
control. Automation, meanwhile, will be used to refer to the
degree of replacing human work in a given domain or task
(Figure 2). Using these terms, we can say that A3 technolo-
gies, with varying levels of autonomy, automate tasks once
exclusively performed by humans. These terms have been used
quite interchangeably in the literature, patents, manuals, and
other technical, scientific, and public discourse. Bradshaw,
Hoffman, Johnson, and Woods (2013) explore these overlaps in
terminology and surrounding misconceptions, by enumerating
seven “deadly myths.” These are: (1) The erroneous idea that
autonomy is unidimensional, when in fact the term encompasses
qualities such as self-directedness, self-sufficiency, and many
more; (2) Numeric scales describing “levels of autonomy” are
poor ways to scientifically ground these multiple concepts; (3)
Autonomy is not a “widget,” a specific technology, or a discrete
property of the system; (4) A3 systems as a rule are not truly
autonomous, requiring human involvement on some timescale;
(5) Full autonomy, when eventually achieved, does not obviate
the need for human–machine collaboration; (6) Humans create
systems incapable of collaborating with us at our own peril;
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Figure 1 “L” represents the load or task, and “A3” represent the automation, autonomy, or artificial intelligence (AI), in this metaphor

for human–A3 interactions in complex tasks. Relative to baseline human ability, at the left, A3 can share the load, which extends human

ability or provides humans periods of rest. A3 can also trade the task with humans, perhaps serving as a backup. However, A3 replacing

humans will perform at a lower level than a human–A3 team, due to naturalistic complexities. Best absolute performance comes from

collaboration between humans and A3 in most situations. (Source: Adapted from Sheridan and Verplank, 1978.)
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Figure 2 Classifying human and A3 capacities across task
entropy, which is often a function of environment complexity
and degree of automation. While present systems are capa-
ble of handling prespecified tasks, and even moderate levels
of task entropy, in more complex environments the best perfor-
mance is achieved through supervisory control in which humans

monitor and respond to incapacities in and failures of A3, or in

a collaborative control arrangement where a human- A3 team
manages the task together. Indeed, unpredictable environments

where humans thrive may someday be a space amenable to A3

action, and designers should begin now to consider where and
if, in that eventuality, humans will find dignified work. (Source:
Adapted from Sheridan and Verplank, 1978.)

and (7) Full autonomy is not likely possible nor is it universally
desirable; and that autonomy is not necessarily humanlike and
it does not replace human agency. These important points are
necessary to understand human factors in A3, and to design
optimal, or even acceptable, human–A3 systems.

The role of HF/E in A3 design remains centered around the
goal that A3 self-action is ideal to provide maximum benefit
to humans while increasing the likelihood of task success. The
automation of human tasks employing A3 also raises significant
risks for individual users and society at large, related to the
introduction of potential new sources of error, loss of privacy,
data security risks, lack of explicability and transparency of
algorithms, job replacement and loss, appropriate trust in and
wise adoption of A3, and surfaces issues of ethics and gover-
nance (Kearns & Roth, 2019). Human factors and ergonomics
(HF/E) researchers and practitioners have for over 80 years
faced the challenges and opportunities afforded by automa-
tion, defined as systems which perform functions previously
managed by a human operator (Parasuraman, Sheridan, &
Wickens, 2000). These years of work reveal impacts far beyond
the replacement of humans, and shows rather that the intro-
duction of A3 has produced unexpected machine requirements
and changed human roles (Woods, 1994). Indeed, the role of
the human can move from exerting effort to supervising the
effort of A3, or supervisory control. As such, A3 reshape rather
than replace human effort. A3 systems, with few exceptions,
require human supervision and interaction, if only as the human
experiences the final output. Sheridan and Verplank’s (1978)
classification of task factors and the suitability of tasks for
humans or machines (see Figure 2) provides an introduction to
human–automation collaboration, and also calls into question
whether A3 is always the answer (see Hancock, 2014).

A3 can also help to overcome HF/E challenges, and lead to
the successful employment of system automation (Coleman,
2019; Frischmann & Selinger, 2018; Shekhar, 2019). Further-
more, applications of A3 in the context of human factors and
ergonomics can be used: (1) to promote autonomy; (2) to predict
human cognitive behavior; (3) to anticipate human physical
states; (4) to analyze massive datasets of human measurements;
and (5) to enable new human factors methods (Lau, Fridman,
Borghetti, & Lee, 2018). For example, Canonico et al. (2019)
used A3 technology, team cognition, and collective intelligence
to develop a new model for teamwork. Chollet et al. (2017) pro-
posed a model to automatically extract sequences of non-verbal
signal characteristics in order to develop a virtual recruiter that
could express social attitudes. De Melo et al. (2012) developed
an AI-based approach to create the ability to recognize emo-
tions in a multi-agent system. These innovations highlight the
importance of emotions in communication and human–machine
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interactions. They give hope that A3-assisted HF/E work can
provide an understanding of complex human behavior-related
design opportunities, and so address previously intractable
problems.

The stakes for design of A3 have never been higher, as illus-
trated by the 2018 death of Elaine Herzberg, the first recorded
fatality due to an autonomous vehicle. Walking across a dark
road, not at a marked crosswalk, Herzberg was struck by an Uber
autonomous test vehicle which failed to identify the unexpected
object as a pedestrian until 1.3 seconds before the crash (Griggs
&Wakabayashi, 2018). The supervisory human driver was, prior
to the incident, watching an episode of The Voice on a handheld
device, looking downward, and not attending to the road envi-
ronment. Both human and A3 acted too late to avoid a collision.
The full implications of this tragic event are still unfolding at the
time of this writing. Testing of increasingly autonomous vehicles
moves forward, and Uber’s own report on the incident (Uber,
2019) has underlined the potential for autonomous vehicle tech-
nology to be safer than unassisted human drivers. Compelling
design questions remain: how might the human be better inte-
grated into the decision-action loop, and howmight design equip
future human–A3 teams to prevent further tragic failures? There
is, happily, good evidence that such design efforts can pay great
dividends. For example, in a 2005 online chess tournament in
which human players were allowed to use computer assistance,
the best rated computer system, and the best rated human team,
were both defeated. The victors, instead, were human players of
intermediate skill paired with a less powerful computing sys-
tem, but armed with a unique strategy for human–computing
collaboration. “Weak human plus machine plus better process
was superior to a strong computer alone and, more remarkably,
superior to a strong human plus machine plus inferior process,”
said chess grandmaster Gary Kasparov of the match (Behymer
& Flach, 2016).

The present chapter is written between “AI winters,”
(Floridi, 2020) times of decreased funding of AI technolo-
gies, indeed at a time of great optimism and investments in
A3 technologies. It is tempting, in a moment such as this, to
imagine that carefully considered design is secondary to the
ever-accelerating march of technological progress. Surely, A3

can simply design itself? We argue throughout this chapter that,
in fact, design is key to all A3 technologies, and that the advent
of autonomy which has no need for humans is not only unlikely,
but likely undesirable. HF/E research and understanding serve
as a vital foundation for building strong human–A3 teams.
Independent of other worrying indicators, such as the dimin-
ishing rate of increase in computing capacity that powers the
deep learning techniques that underpin nearly all A3 advances
(Thompson, Greenewald, Lee, & Manso, 2020), we here sub-
mit that the design of effective human-computing teams for
high-stakes tasks is likely to become of ever growing impor-
tance due to even greater capabilities of human-A3 collaborative
systems.

A3 in collaboration with humans can provide great ben-
efits, and has, as of this writing, had transformative impacts
on domains including communication, commerce, design,
global and extraplanetary transport, medicine, and security
(Heer, 2019; Lau et al., 2018; Manyika, 2017; Mittelstadt,
Russell, &Wachter, 2019; Raisch & Krakowski, 2020; Schaefer
et al., 2015). Wang and Siau (2019) note that A3 systems
already interact with the real world and make autonomous
or semi-autonomous decisions in both civilian and military
domains including manufacturing and factory automation,
automated vehicles, robots and drones, education, human
resource management, cybersecurity, health care, finance, and
management of hazardous environments. Vamplew et al. (2018)
discussed the potential behavior of widespread A3 systems,
and both the benefits and challenges they bring, highlighting

the issues of ethical, legal, and safety-based frameworks of
human–machine interaction. We must keep in mind using A3

to ensure the humane use of human work, rather than allowing
machinery and automata to place humans in roles to which they
are unsuited, use them as mere supervisors, or displace them
altogether. As Norbert Wiener stated in his seminal 1950 book,
The Human Use of Human Beings, “[machines should be] used
for the benefit of man, for increasing his leisure and enriching
his spiritual life, rather than merely for profits and the worship
of the machine as a new brazen calf” (Wiener & Heims, 1989,
p. 162). The proliferation of A3 will likely be accompanied by
changes in the way we view the roles of A3 and humans, espe-
cially in emerging areas like crime and fraud prevention, social
communication, brand management, customer services, soft-
ware testing and development, human resource management,
among many others (Coleman, 2019; Frischmann & Selinger,
2018; Kearns & Roth, 2019; Mittelstadt, Russell, & Wachter,
2019). Indeed, while some researchers argue that while A3

threatens human control (Kearns & Roth, 2019; Mittelstadt
et al., 2019), it is also redefining the identity of the humans who
are exerting control (Coleman, 2019). We here postulate that
A3 will lead to re-engineering humanity as we know it (and see
Frischmann & Selinger, 2018). The present chapter endeavors
to provide tools from the HF/E literature with which to shape
the development of A3 with respect to our knowledge of human
factors.

2 UNDERSTANDING HUMAN INTERACTION
WITH A3

HF/E research has long understood that, when designing the
shift of control from human to machine or from machine to
human, greater system autonomy actually requires greater con-
sideration of the human operators’ contribution (Bainbridge,
1983). It is indeed difficult to conceive of A3 in which there
is no human contribution. Such an imagined “completely
autonomous” system would, at the very least, need to be set
in motion by a human, or monitored for failure and replaced
when no longer functional. Indeed, designers who imagine their
systems as completely independent of humans often simply
neglect to think on a large enough timescale. In extending
human ability, A3 systems require supervisory control, in which
a human may (1) plan off-line; (2) teach the system; (3) monitor
the system’s actions; (4) assume control; or (5) learn from the
actions of the system (Sheridan & Parasuraman, 2005). Such a
system–operator response occurs in cycles: the human perceives
the machine’s state and takes an action, the machine senses the
new state of the environment and itself takes an action. This
cyclical interaction gives rise to the term in-the-loop, a char-
acteristic of an operator who is actively exerting supervisory
control. The problem of keeping operators in-the-loop is one
of the principal design challenges of this moment in history,
and unlikely to be solved in one “great leap” (Endsley & Kiris,
1995). Consider the complex challenges of keeping humans
in-the-loop with other humans, also unlikely to be solved in
one “great leap,” and instead an unending labor of strategically
building understanding. Humans and machines function as
teams, and the need to keep such teams together and actively
cooperating is a significant and exciting design challenge in its
own right.

2.1 Human-A3 Teams of Teams

Humans and A3 working together are often referred to as teams
(Groom & Nass, 2007; Jung et al., 2013). Crucially, these teams
can be described as one human matched with one system (1-1),
many humans facing a single system (n-1), a single human
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facing many systems (1-n), or many humans facing many
systems (n-n). Often, the ground truth depends on your frame
of reference. For example, it is easy to conceptualize a single
human driver “teaming” with an advanced driver-assistance
system (ADAS) as a 1-1 situation, but stepping back to con-
sider the larger driving public reveals that many individuals
are interfacing with the same ADAS system (n-1). ADAS are
often the aggregate of several individual systems, working in
concert (Cades, Crump, Lester, & Young, 2017), and so an
argument can now be made for this being an n-n situation. With
the advent of constantly connected cars, the situation becomes
again more complicated, as individual drivers may interact with
a combination of systems present in their vehicle, and with
remote systems. As the systems present in cars move beyond
the safety-focused capabilities of ADAS, and toward assuming
an increasing proportion of the driving task, the very concept
of a human–machine team is challenged. On roadways with
many automated or autonomous vehicles, systems more com-
monly communicate with one another (vehicle-to-vehicle, and
vehicle-to-infrastructure) than communicate with the human,
and that n-n system is therefore more tightly coupled with
other machines than with the human in the vehicle. At what
proportion of automation versus human control is the human
no longer a significant member of the “driving team”? At what
point does “teamwork” fall away, because humans and A3 are
no longer defensively “working together” (and see Hancock,
2020a)?

Teams of humans can also interact with and benefit
from integration with A3, in n-n settings. Team cognition,
in human–human teams is the binding mechanism which
emerges from the interplay between members’ individual cog-
nition and process behaviors like coordination (Cuevas, Fiore,
Caldwell, & Strater, 2007), and can in coordination with A3

be augmented. For example, consider the design opportunities
which exist around expertise coordination processes, such as
asking, learning, sharing, and solving (Caldwell, Megan, &
Jordan, 2019). In these, novices and experts might interact,
exchanging or generating new knowledge, and A3 would have
the opportunity to enhance information exchange and updating,
with positive impacts on team attention and shared situation
awareness. Such hybrid teams of teams serve to amplify the
already amplified intelligence of team cognition, providing
decisive analytical and strategic benefits. Current generation
implementations of this idea are rudimentary, at best, and there
is an enormous possibility waiting to be tapped at the intersec-
tion of human and machine teams by enterprising A3 designers.
Indeed, the questions of what human intelligence is, and what it
can be, are waiting to be reinvented.

2.2 Humans and A3 Explore in Sequential Stages

A perception-action cycle consists of information being
gathered through sensory organs, this being used to modify
knowledge of the world, guiding decision-making, and culmi-
nating in directing or withholding action. This action changes
the state of the world, and necessitates re-sampling, starting the
cycle again (Neisser, 1976). While humans may make inter-
active changes, we are also able to react to changes stemming
from outside agents or forces; changes within the environment
are the impetus for re-engaging in the cycle (Gibson, 1969).
Such cycles can be considered at many different timescales (K.
Smith & Hancock, 1995), from the moment to the millennium,
and potentially beyond. This cycle framework underlies useful
psychological constructs, such as attention, memory, informa-
tion acquisition (IA), situation awareness (SA), distraction, and
multitasking. Multitasking, in this light, might be framed as
concurrent performance of tasks requiring multiple concurrent
perception-action cycles, each of which becomes more likely

to experience delay and/or failure. Humans spend their entire
lives engaged in such cycles, turning information about events
in the outside world into insight as to what actions might elicit
advantageous outcomes, and then directing selected actions
toward impacting events in future cycles.

A3 can, interestingly, also be understood through a
cycle-based metaphor. A machine system samples through
sensors, or likewise engages in the acquisition of information,
and from this arises a set of processes which can be conceptu-
alized as paralleling the human perception–action cycle. This is
followed by analysis of information, with an option to display
that information to a human teammate. Next, a decision regard-
ing actions to be taken are rendered. Finally, the A3 engages in
implementation of an action. This, in turn, starts the sequential
stages of an automated system over again (Parasuraman et al.,
2000; Sheridan & Parasuraman, 2005, p. 93). In human–A3

teams, supervisory control can occur at every sequential stage
of an automated system, and each has the opportunity to be
assigned to a team member: a computer or human (Parasuraman
et al., 2000). To be clear, this is not a direct parallel in all engi-
neered systems, but it is a useful and time-tested approximation
in considering system design (Broadbent, 1958; Rasmussen,
1986).

In attempting to integrate the perception–action cycles of
humans with the sequential stages of A3 systems, a designer
must consider human tasks that fit with the machine pro-
cess. Humans already follow an ingrained set of linguistic
turn-taking behaviors, or antiphony. The antiphony framework
leverages this inherent call-and-response of language, and
allows engineering-oriented, time-based expression of interplay
between human and machine at the task, and subtask, levels
(Sawyer, Mehler, & Reimer, 2017). In a 1-1 interaction, for
example, a designer might determine when the human operator
was engaged in perception, cognitive processing, and decisions,
and when they directed action toward the system, the period
when the system was processing, and when it was producing
multimodal cues for the operator. Processing by the human
operator, or the system, often occurs in parallel with the other
party’s action, and so the period of operator latency, and system
latency, when either party pauses for processing, can be as
low as zero. Likewise, the duration of system and operator
action can be as low as zero, as inaction can occur, as well as
action interruption by the other party. The cycle (Figure 3) can
start from any step, and provides a framework for predictions
of time, and to understand the results of measured time. For
example, in evaluating and improving the effectiveness of an
A3 email security system, the finding of long delays in operator
latency might prompt different questions and attempted design
interventions than the same delays in system action. A savvy
designer will think about opportunities to dovetail the percep-
tion action cycles of human operators with the sequential stages
of automated systems, toward functional, integrated teams.

2.3 Human-A3 Team Function Allocation
and Levels of Automation

As in all teamwork, a constant challenge in human–A3 teams
is delegation. In cooperation, there are advantages to allocating
tasks to the team member most capable at the current moment.
As a result, the contributions of a human operator are helpful
to consider in relation to present and projected near-term A3

capability. For some 70 years (Fitts, 1951), tables detailing
the superiority of humans and machines by task type have
been used for function allocation, the assignment of tasks in
a human-machine team. A related approach is to consider the
differing proportions of human and machine involvement in
the overall task ecosystem, and construct levels of automation
(LOA), which designate which party does what across multiple
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humans with the sequential stages of A3 systems, can be used to plan a design, or analyze data collected from human-A3 interactions.
(Source: Adapted from Sawyer et al., 2017.)

levels of autonomy. Many tables of function allocation and
levels of automation have been proposed over the years. The
analytical approach to human–computer cooperation, one of
the oldest taxonomies, was proposed by Sheridan and Verplank
(1978) and revised by Sheridan (2002). A more concise tax-
onomy with four automation levels was introduced by Endsley
(1987, 2016). Riley (1989) discussed a novel taxonomy as a
2-D matrix with rows corresponding to the level of automation
and the columns to intelligence levels. Milgram et al. (1995)
proposed a taxonomy with five LOA, considering the differ-
ent roles a human operator could play in remote manipulator
systems. Draper (1995) developed a taxonomy that combines
human operators with machine control in teleoperation, with
five automation functions carried out by the human opera-
tors and the other four allocated to the machine. Kaber et al.
(1999) identified numerous LOA combinations which were not
included in the former taxonomies, with a detailed description
of “who” (human or system) is supposed to do “what” (task) at
each level as compared to the previous hierarchies of degrees
of autonomy. Lorenz et al. (2001) present a more compact
taxonomy than the previous ones, consisting of only three
LOA in the context of automation support. Function allocation
taxonomies are also built specific to domain. Clough (2002)
described a four-level automation taxonomy with a specific
application in unmanned aerial vehicles. Proud et al. (2003)
presented a taxonomy of automation with eight different levels
of autonomy scale to fit the tasks encompassed by a function
type, i.e., observe, orient, decide, or act. Finally, Fereidunian
et al. (2007) presented an extension of the LOA taxonomy
introduced by Sheridan (1992b), adding an eleventh automation
level. Indeed, many more such taxonomies exist, and a designer
in a specific domain might be unsurprised to find that another
group had already considered the priorities of delegation in that
context.

In specific domains, such as automated driving, such levels
can be quite specific and the basis for both technological design
and regulatory policy (SAE International, 2016). It is extremely
important to recognize the inherent complexities of designing
such levels, and that applications relative to their definitions and
implementation may be revealed along the path of their design
and development. For example, the Society of Automotive
Engineers’ (SAE) five levels of driving automation (LoDA)
defines “conditional driving automation,” as a self-driving
vehicle performing “the complete dynamic driving task (DDT)
within a limited operational domain,” for example ‘highway
driving’. The word complete notwithstanding, the driver is
expected to respond to any and all automation-issued requests
to take over control in a timely manner, which may be difficult
or impossible as considered in light of human factors research.
This ambiguity does not mean that the SAE LoDA are “wrong,”
but does reveal an opportunity for clarification of the manner in

which A3 and a human share and trade the task of driving (as in
Inagaki and Sheridan, 2019).

Mission-critical tasks with no clear pattern of superiority
can be better understood through the straightforward analyti-
cal approach provided by Sheridan and Parasuraman (2005).
Indeed, this probability-based signal detection approach makes
it ideal not only for one-time understanding of deciding whether
an A3 or human operator is a better fit for a task, but for longi-
tudinal functional allocation analysis of tasks through changes
in context, requirements, and technological progress as well.
When the answer to function allocation is “it depends,” the
answer is often to move beyond static allocation of functions
to dynamic allocation of function using adaptable or adaptive
automation (Sarter, Woods, & Billings, 1997; Scerbo, 1996;
Sheridan & Hennessy, 1984). Dynamic function allocation
has the advantage of providing automation which is robust
to the changing demands imposed by shifting environments
and human capabilities. For the human operator, this means
improved performance, including control during anticipated
(Harris et al., 1995) and unanticipated (Hoc, 2000) events. The
idea of longitudinal function allocation can be nested with the
concept of dynamic allocation of function, recognizing that
identifying which agent is assigned what task is, in human–A3

interaction as well as in human–human interaction, best viewed
as an ongoing process. Of course, optimal delegation cannot
always be mathematically derived, and may indeed be driven
by convention, custom, and individual preferences of humans,
which are likewise important. Human desire for control should
be factored into decisions regarding the application of A3.
Humans require engagement in the tasks we are to undertake,
and even to have some fun, with due regard to safety and
well-being (Hancock, Pepe, & Murphy, 2005).

While such heuristic tools seem simple, only asking a
designer to look through the functional requirements of the
task, and capabilities of humans or machines, and then to assign
them to a human or A3 may not be enough. All of the possible
combinations of human and A3 collaboration across even a
single task form a big space, and it is difficult to project exactly
how the human–machine system will behave in a naturalistic
environment. There is a risk of placing humans in “gaps” where
automation is incapable of fulfilling the needed role, or placing
A3 in places where human capacities are limited. Consideration
must be given to the shifting interdependencies that underlie
complex activities with multiple agents engaged in such tasks.
Engaging in function allocation without considering interde-
pendencies can result in the human performing only a fractured
collection of subtasks too difficult to automate (Bainbridge,
1983), or worse, different fractured sets in different situa-
tions. Therefore, especially in high-stakes activities, testing in
the environment the system will be used in, or a reasonable
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facsimile, is vital. In determining task assignment to a human
or computer, Fitts’ List variants (Fitts et al., 1951) and LOA are
best used to form a starting point for consideration, with deeper
testing-grounded analysis playing an absolutely vital subse-
quent role. No heuristic rule set can perfectly serve the larger
goal of identifying opportunities for a hybrid human–machine
team to place team members in ideal roles with respect to
achieving the target goals (Hollnagel & Bye, 2000; Sheridan &
Parasuraman, 2005).

Finally, taxonomies and LOA fundamentally ignore the great
variability in human beings. While designing for “the general
public” is often necessary, A3 provides a unique opportunity to
individuate, to allow the system to accommodate the individ-
ual. Indeed, if there is any great opportunity in the advent of
increasingly flexible machines exercising greater autonomy, it
is that they might begin recognizing and tailoring their interac-
tion to each of us, much as we do to one another. In order to
understand these opportunities, designers are advised to build
an understanding of how humans differ from one another. One
useful way to conceptualize these differences is through traits,
states, and the focused application of learning, training.

2.4 Human Traits, States, and Training

Broad differences in human ability, both between individuals
and within the same individual over time, reveal another level of
design: the question ofwhether A3 or a human should be on point
for a task depends both upon the person, and on the moment.
The capabilities of a racing driver and the average driver dif-
fer markedly, and a drunk driver’s capacities fall even further
down on the curve of potential performance. More complex still
is the possibility for a person who is an excellent driver in one
moment to become a danger to themselves and others in the next.
One’s state, such as being well rested, fatigued, drunk, focused
on driving, or cognitively preoccupied, is a rapidly changeable
factor in skill and capacity. Traits, meanwhile, are relatively sta-
ble factors which change only over prolonged periods of time.
Age, height, spatial reasoning capability, and disability are all
trait factors which persist across time in an individual. Training
spans the intermediate temporal space: individuals can improve
their capacities through dedicated practice or learning, some-
times in the space of hours. States, traits, and training interact
to determine capabilities in the moment, and both the design of
A3 and the configuration of adaptive systems need to take these
into account on the appropriate timescale.

State factors are rapidly changeable parameters, often highly
related to actions in the moment. A3 systems can respond best to
variation in human states through a combination of monitoring
the human, referred to as state detection, and making available
their own state, through system transparency (J. Y. Chen et al.,
2014). For example, sleepiness can significantly interfere with
cognition, impair decision making (Hockey & Wiethoff, 1993),
increase reaction time, and negatively impact vigilance (Philip
et al., 2005). A driver’s state can be detected by A3 through
driver-facing camera approaches monitoring eye and eyelid
information. This state estimation can be used to provide alarms
or interlock functionality (Sommer & Golz, 2010) and change
the level of automated agency accordingly. The separate state
of vigilance decline, which can reduce ability to detect signals
in as little as 30 minutes (J. F. Mackworth, 1969, 1970; N.
H. Mackworth, 1948), and which is common in supervisory
control of A3 (Sheridan, 1975, 2006, p. 200) has no equivalent
camera-based detection mode, and must be detected by EEG
or other less convenient biosignals (Greenlee, DeLucia, &
Newton, 2018).

Any state detection technology should be evaluated in terms
of its ability to identify relevant human states, in naturalistic
environments, and under normal operational conditions. The

ability to identify human states in the lab, while a useful initial
data point, is often not indicative of such real-world perfor-
mance. It is also important to be certain the state can actually
be deduced relative to the context, and that the data upon which
assumptions were built is sound. For example, direction of the
eyes can be detected through computer vision approaches, but
its use as state detection is controversial because of the difficulty
of matching eye direction to environmental information (Wolfe,
Sawyer, & Rosenholtz, 2020). What is visually present in the
environment matters, as changes there can rapidly increase the
demands on a technology supervisor. Likewise, irrespective
of eye position, cognitive focus can be diverted away from
the focal task by distractions (Lavie, 2010), “trapped” through
tunneling into a task that occupies cognitive resources (Simons
& Chabris, 1999), or spread thin among multiple concurrent
tasks (Salvucci & Taatgen, 2008, 2010), some of which may
not even relate to the task at hand (“Did I turn off the stove?”).
The malleable attentional resources theory (Young & Stanton,
2002a, 2002b, 2006) suggests that attentional resources can be
reduced by periods of low load, and that when there are rapid
increases in attention demand from the environment, which can
leave a supervisor with insufficient cognitive resources to detect
a change, or respond to a pressing situation, especially if there
is a silent failure of automation that is not detected.

Most, if not all, new approaches to state detection in driving
can be revealed to be either opaque machine learning models,
or derivations of the seminal work of John Senders (see Eisma,
Hancock, & de Winter, 2020), and indeed the former may yet
be determined to be the latter. Foundational findings hold stub-
bornly true in today’s attempts to integrate state detection into
A3. Direction alone is not sufficient to understand what is being
looked at and how it affects the human, and so no A3 system, or
subsystem, can accurately predict human attention or cognitive
load without having access to both gaze direction and the con-
tents of the environment. Finally, consider that state detection
is itself an A3 system, and so the provenance of the underlying
data and assumptions is important. For example, recent evidence
suggests that much of the eye tracking data used to build mod-
els of driver distraction and understanding of in-vehicle behav-
ior may in fact be systematically flawed (Jansen, van der Kint,
& Hermens, 2020), a serious consideration for designers using
such research to underpin state detection or design decisions in
production settings. Visual behavior-based state detection is, of
course, but one exemplar type, and many other types of state
detection fail similar logical tests in certain contexts. State detec-
tion, as a capability of A3, is integral to interaction with humans,
and increasingly broadly applicable and effective, but it must be
used with great caution.

Trait factors can be described as unchanging or slowly
changing attributes, such as age, personality features, or phys-
ical or cognitive capacities or disabilities. These factors can
define how A3 should be designed to best work with stable
categories of human users, compensating for weaknesses, or
leveraging strengths. Cognitive and physical capacities decline
with advancing age (Kline et al., 1992; Waller, 1991), and
inexperience or the greater risk-seeking orientation of young
people (Jonah, 1986; McKnight & McKnight, 2003) make age
an important consideration in the adoption of A3 technologies,
or at least a proxy for mental and physical capabilities and
risk-seeking or risk-averse orientation. Children, adolescents,
and teenagers also have different physical and cognitive capac-
ities compared to adults, and thus the design of technology
should take into account the intended user base. In actuality,
A3 systems may have more to offer older users than to people
in their physical prime, as they can provide capabilities an
individual can no longer provide for themselves, and therefore
an extension of the time during which an individual can age in
place (J. Miller et al., 2018).
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Training, and the underlying human capability of learning,
provide a rapid and somewhat more permanent way to affect
performance. Military personnel, industrial operators, pilots,
and professional drivers have extensive training on how the
automated systems they use operate, their limits, and their
capabilities. Training helps form an accurate and accessible
mental model (Halasz & Moran, 1983; Johnson-Laird, 1980;
Norman, 1983; Richardson, Andersen, Maxwell, & Stewart,
1994; Wilson & Rutherford, 1989) of the system, perhaps one
more comprehensive than one formed through exploration
alone. Kieras and Bovair (1984) experimentally explored the
development and use of mental models using an entertaining
Star Trek-themed experiment, finding that people with training
that helps form a model of the device’s behavior showed faster
learning and that the model can help users to infer opera-
tional procedures. Other research showed that providing users
a conceptual model of a programmable calculator’s mem-
ory system (Halasz & Moran, 1983) aided in novel problem
solving, while not improving performance in routine problem
solving. Inaccurate mental models may cause improper use of
systems, both simple ones like a home thermostat (Kempton,
1986, 1987), and more complex systems such as computed
tomography (CT scanners). Barley (1988) notes that users of
complex systems can create “anthropomorphic” representations
of systems, ascribing them humanlike agency where it is only
the interaction between system and user behavior that generates
what could be considered fanciful mental models. Most A3

systems, at least as of 2020, don’t have “bad days” or actively
plot to thwart your aims. On a more functional note, A3 systems
certainly have bad contexts, in which their ability to contribute
to a task may degrade to the point where they thwart the aims
of the user.

If users are not properly trained in the use of a complex sys-
tem, they may develop strategies for clearing errors or resolving
problems that do not correspond to reality, potentially reducing
efficiency or compromising safety, or that don’t actually solve
the problem at hand. It is worth considering that this mental
models researchwas conducted in the 1980s, with relatively sim-
ple systems compared to the much more complex A3 systems
now common in our workplaces, homes, vehicles, and pockets.
A3 and training in its use have evolved, and not in a way to be
simpler for the designer.

Designing training and instructional materials for usability
are serious concerns for A3 development and deployment. Out-
side of the rigid requirements of professional, legally required,
and conscription-based training, it can be very difficult to entice
users to train at all. One reason for this is the impermanence
of systems that are constantly under revision, and for all the
benefits of software-updatable systems, they do not update the
human and so can render training instantly obsolete. This reality
has given rise to the prominence and importance of technolo-
gies which “just work” or are “intuitive.” In reality, many such
technologies are built on sets of conventions we have learned
over our entire lives, a form of iterative training. For example,
the iPhone was introduced over a decade before this writing. It
has since been the most common smartphone by several metrics,
so any claim of inherent “iPhone usability” must be measured
against the fact that a generation has literally grown up with the
design and interaction language of this product. The barrier to
entry that many A3 systems face in finding “intuitive” behavior
that users will engagewith can also be framed as the challenge of
finding behavior close enough to existing conventions to allow
for adoption without undue investment in deliberate training.

Designing systems to be explored by users should not be
relied upon as a replacement for training or documentation,
exploration should ideally be combined with training. To that
end, A3 systems should include elements that help guide user

behavior, such as task-guidance wizards or intelligible docu-
mentation written for the expected level of user knowledge, and
facilities should be included to avoid irrevocable or hazardous
action. Where it is feasible and reasonable to explore an inter-
face’s affordances, users will do so and probably should; and
design should support them in that endeavor.

While these categories of traits, states, and training are use-
ful, some areas of interest are obviously a blend of all three. Per-
sonality factors and experience with technological systems both
have a role to play in how people use technology (Davis, 1989)
and trust in technology (Hoff & Bashir, 2015). A meta-analysis
by Hancock et al. (2011) found that the largest determinants of
willingness to trust a robot is its prior behavior, with person-
ality factors playing only a minor role. Propensity to trust as
a trait (Frazier, Johnson, & Fainshmidt, 2013) may have a sig-
nificant role to play in a human–agent relationship, influencing
use or adoption, especially in situations where there is minimal
prior experience with the system to draw on. While the intersec-
tion of personality with user behavior is undoubtedly one of the
most challenging aspects of modern A3 development, machine
learning approaches have shown ability to parse this complex
intersection (De Melo et al., 2012). We see great opportunities
for designers willing and able to tackle this complex opportunity.

2.5 A3 Complementarity in Systems Architecture

From a systems architecture point of view, integrating humans
with A3 is in part the art of being certain of the relative strengths
and weaknesses of each party to complement one another.
Jarrahi (2018) discussed human–automation interactions with
attention to the complementarity of humans and A3, in the
context of organizational decision-making processes, and has
suggested that while machine learning models align with the
analytical decision-making approach, they are less viable in
unpredictable and uncertain situations—humans having at this
time greater cognitive flexibility. This fragility when faced
with the unexpected is a fundamental weakness of A3, and is
correspondingly a strength of humans. Therefore, it follows that
machines take care of mundane and predictable tasks, while
humans focus on creative and uncertain tasks, but this is not
always advisable (Takayama, Ju, & Nass, 2008). By considering
capacities in relation to uncertainty, complexity, and equivocal-
ity, appropriate roles for humans and machines can be found
within organizational decision making (see Figure 4), including
collaborative arrangements using humans and A3 as teammates.

Under this arrangement, A3 assists human decision-makers
in terms of uncertainty with predictive analytics, and by detect-
ing relationships among hidden factors in a system. Intuitive
approaches used by humans under conditions of high ambigu-
ity are optimally combined with the superior speed of A3 in
collecting and analyzing information, resulting in better han-
dling complex problems. Furthermore, A3 can facilitate human
decision-makers in handling equivocal situations and resolving
relevant conflicting needs. However, resolving equivocality is at
this time definitively the responsibility of human actors. Jarrahi
(2018) concluded that humans offer a unique and irreplaceable
intuitive approach for handling uncertainty and equivocality,
while A3 provides support to extend humans’ cognitive abili-
ties. Agrawal et al. (2019) argue that the proper design of A3

interaction requires distinguishing the concepts of prediction
and judgment, where prediction reflects the information about
the expected state of the world, while judgment relies on factors
that are difficult to describe and therefore codify (see Figure 5).
Role and types of judgment might indeed be a function of
whether or not prediction improves the value of judgment.
For example, without adequate prediction, judgment can direct
decisions toward riskier actions, while with enhanced prediction
capabilities, judgment can direct decisions toward safer actions.
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Figure 4 Humans and A3 have different strengths and weaknesses with regards to operating under uncertainty, dealing with complexity,

and resolving conflicts (termed equivocality by Jarrahi). Humans and A3 can work in a complementary capacity in decision making
situations, collaborative systems offering the greatest total envelope of performance. (Source: Adapted from Jarrahi, 2018.)
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Figure 5 Augmenting human capacities with machine capabili-
ties in prediction, and cost control, and leveraging human abilities
in judgment and action selection can yield optimal outcomes
in collaborative decision-making and control situations. (Source:
Adapted from Agrawal et al., 2019.)

Architecting human-A3 systems therefore requires balanc-
ing not only aspects of the human and machine, but thinking
through scenarios in which these aspects hold weight and affect
outcomes. There is no “free lunch,” and every interaction of
A3 with a human operator has a cost, in terms of capacity of
the system, but also in terms of human attention, workload,
and potentially task success. This is true, even when human–A3

interaction is beneficial, even when the intention is not to
distract, and even when users like the interaction (see Sawyer,
Finomore, Calvo, & Hancock, 2014), and so a designer must
carefully consider human performance in A3 design. What we
have here focused on is a number of underpinnings of human
interaction with A3, many more surely exist. Indeed, insight as a
designer into hybrid human–A3 systems rests on the foundation

of the design implications of psychological, biological, soft-
ware, and hardware factors. A3 systems are most effective when
human-centered, designed to leverage a clear understanding of
HF/E, to address human capabilities relative to realistic levels
of training.

3 DESIGN OF HUMAN-CENTERED A3 SYSTEMS

The design of A3 can be described as the engineering of affor-
dances for shifts in control over the course of tasks. A3 and
humans share responsibility for the task at hand, and in pursuit
of that goal regularly take charge, or hand off control authority.
A continuum can be imagined, from full manual control by a
human user, through to full autonomous control by A3, with
multiple levels of shared control between those poles (see
Figure 6). The arbiters of success in the shifts between these
levels of shared control include the capability of the operator
and the system to initiate and respond to changes in their
partner’s level of agency, to the quality of information transfer,
and also the resilience of both actors to failures in transitions
on the part of the other. This resilience to unexpected outcomes
is one of the greatest current challenges facing designers of A3.
Greater degrees of change in level of autonomy, for example,
from fully autonomous to complete manual control, raise the
risks of failed handoffs, and changes between levels within
the shared control regime can result in operator confusion, or
losing track of which agent has authority over various control
functions.

Whenever a human and A3 interact, there must be one
or more modes of interaction, or channels through which
information flows. Multimodal communication with A3 has
more opportunities to be a bidirectional process than might be
possible with less agentic systems. User exchange with a tablet
computing device, for example, might feature information
flowing from tablet to human via (1) vision in the form of a
high-density display and perhaps additional light indicators,
(2) audition in the form of audio output, and (3) touch in the
form of haptic vibration. Simultaneously, information flows
from human to tablet, and associated connected systems, via (1)
manual touch, (2) manual movement of the device, (3) auditory
voice commands, and (4) possibly machine vision. Humans
receive information from A3 via sensory channels, and then per-
form cognitive interpretation, render a decision, then plan and
execute actions that direct information back. More traditional
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Figure 6 Level of autonomy can be considered on a spectrum from fully manual control to fully autonomous control, with multiple
levels of shared or switched control between them. Transitions in level of automation can occur between any two levels, initiated by

both human operators or A3 systems. The greater the degree of change in level of autonomy, the higher the risk of operator confusion,
automation surprise, or failed handoff. (Source: Adapted from Flemisch et al., 2008.)

systems have historically handled input deterministically: press
a button to elicit a predetermined response. With A3 systems,
received information may be handled in a nondeterministic
way. One can conceptualize such successive exchanges of
information as a dialogue, and indeed the call and response of
antiphony is a useful way to imagine such interplay. On both
sides of this exchange, quality of information is a strong arbiter
of a successful interaction.

In quantifying the success of moving information, the
concept of situation awareness (SA) is an excellent way for
designers to conceptualize user perception of A3 interaction,
comprehension of associated information, and projection of
future actions (Endsley, 1995). Loss of situation awareness can
lead to an “out-of-the-loop” situation, where an operator loses
track of what an automated system is doing—and not doing
(Endsley & Kiris, 1995). A related threat is mode error, where
an operator does not know what an A3 system is configured to
do (Sarter & Woods, 1995; Woods, 1994). In system design,
interfaces should make it difficult to inadvertently change
modes, and provide clear feedback regarding mode changes.
Judgment, prediction, actions, and associated costs must be
constantly monitored by both humans and A3, and SA on the
part of the human, and system representation of human SA by
A3, can be vital. This is important when considering A3–human
interaction in dynamic, complex environments, and even more
so when outcomes can have significant costs including injury or
death. When the question is division of attention between an A3

system and the environment, designers can enhance multitask-
ing performance while keeping distraction minimal by ensuring
that situation awareness is maintained by human operators
(Skrypchuk et al., 2019). Pre-SA consideration of acquiring the
information needed in order to respond may also be helpful,
and the ideas of Information Acquisition (IA) specifically
address how visual information is acquired (Wolfe, Sawyer, &
Rosenholtz, 2020). This can help designers to understand how
acquisition of information scales, and the process by which
users construct and update their representation of environments.
Design based around such understanding can strongly impact

how information moves from A3 to humans, ameliorating
failure modes like distraction or information overload.

3.1 Information Design

In pursuit of successful responses, how can information passed
from A3 to a human be designed optimally? Here we will
discuss two applied strategies for enhancing multimodal inter-
action: (1) maximizing interpretability; and (2) maximizing
synchronicity. Interpretability differs by mode of information,
but at present the most common modality for interacting with
A3 systems is visual. Displays of all sizes (Hancock, Sawyer,
& Stafford, 2015) are our portal to the majority of A3 systems,
and through them, as of this writing, Americans spend around
5 hours a day on email alone, albeit not continuously (Chung,
2019). Here, they interact with increasingly sophisticated A3

intended to monitor and co-manage the inbox. They also spend
2.5 hours on social media (A. Smith & Anderson, 2018), where
A3 matches them with contact-produced posts from friends and
family, and sponsor-generated content. A3 underpins searches,
and moderates chat, finishes outgoing messages, and manages
notifications for those inbound.

In the visual modality, the written word is still the most com-
mon form of interface, and of content consumed (Chung, 2019;
A. Smith & Anderson, 2018). In messages from A3 intended for
rapid comprehension, attention to fundamentals such as typog-
raphy and formatting provide substantial performance increases,
and in contexts like driving, measurable safety benefits (Sawyer,
Dobres, Chahine, & Reimer, 2017, 2020; Sawyer, Wolfe, et al.,
2020). In longer-form reading, individual differences may be
much greater, but potential gains are also significant: optimal
information design saw boosts of over 100 words a minute for
readers of short passages of text, enough to read an additional 10
pages in an hour with equivalent comprehension (Wallace et al.,
2020a, 2020b). The principles of legibility in textual information
certainly have parallels in visual design leveraging iconography.
Indeed, text is not alone in its ability to convey complex informa-
tion. For example, Chernoff faces (Bruckner, 1978) leverage fast
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human processing of facial features to deliver complex infor-
mation rapidly, and other compelling iconographic schemes for
representing multivariate information have also been put for-
ward. In discussing rapid information communication from A3,
therefore, it is important to consider how well biological sys-
tems achieve these goals. The enormously effective displays of
the human face and body language are aspirational examples.

Synchronicity refers to matching A3 output to human tem-
poral rhythms of communication, such as antiphony. Humans
have traditionally borne responsibility for this when interact-
ing with machine systems, and indeed training in interacting
with A3 often explicitly focuses upon when to communicate.
However, A3 provides new opportunities to engineer not only
system response, but even human perception of time. Humans
are constrained by physiological and cognitive limits: a simple
reaction takes approximately two-tenths of a second (Johansson
& Rumar, 1971; Lerner, 1993), and more complex decision
processes increase that time. Additionally, aging, fatigue, or
distraction can markedly influence cognitive processing and
reaction times. Fortunately, automation can stand in for human
agency, both cognitive and motor. Systems such as automated
emergency braking (Coelingh, Eidehall, & Bengtsson, 2010)
can react faster than humans, and can reliably exert maximum
force to more quickly slow the vehicle. A3 systems can syn-
thesize some forms of information more quickly to augment
or even replace human capacities, although fully autonomous
systems must be employed with care. Without oversight, errors
may occur at a rate the human cannot check. Time pressure
can sway human decision making, influencing people to fil-
ter information (Maule, Hockey, & Bdzola, 2000), focus on
negative information, and even make riskier decisions (Ben
Zur & Breznitz, 1981). A3 can be employed to help humans
to filter or focus on more relevant information, select from a
narrower range of choices that have been preselected, or provide
independent analysis of information when under time pressure,
even if humans maintain ultimate control authority.

Finally, in considering synchronicity, it is important to
realize that human perception of time is itself quite malleable.
Hancock (2018) describes human perception of time as a con-
struct, a product of human design. As a result, time perception
can be manipulated through changing the physical and cognitive
environment. Designing the information provided by an auto-
mated system can shape human perception of time passing, as
anyone who has watched the status indicators of a system move
toward indicating completion, or waited for a kettle to boil, will
appreciate. While it may be less than forthright to design com-
munication to manipulate perceptions of a system’s capabilities,
it may be warranted in the service of reducing user frustration,
encouraging appropriate use of the system, and providing ability
to build a usable mental model, ignoring this problem from
a design perspective could lead to futures in which humans
and machines struggle with fundamentally incompatible
conceptions and perceptions of time (Hancock, 2020b).

3.2 Balancing Multimodal Workload

Humans are not infinite in their capacity, and so it is important
to design A3 to consider the workload required of the human,
and to attempt to avoid overload and subsequent failure of the
human–A3 endeavor. Both humans and A3 taxed beyond abil-
ity do not necessarily fail immediately, but may experience a
pattern of successive worsening failures termed dynamic insta-
bility (Hancock & Warm, 1989). While failure is most impact-
ful in situations with a high cost, it is worth considering that
even low-stakes moments of overload and subsequent failure
contribute to disengagement from, abandonment of, and even-
tual failure of A3 systems. Operators, users, and customers will
not engage with technology that demands too much.

Operators or users are often placed in a supervisory role
where they will need to respond to changes in environmental
conditions or system faults, sometimes with and sometimes
without alerts. “Silent failures” (Louw et al., 2019) present great
danger, as attentional resources may be focused elsewhere, and
without an alert, the failure may go unchecked or unnoticed by
a human. A famous example of this is the “invisible gorilla” that
is routinely overlooked in video recordings of basketball games
(Simons & Chabris, 1999), websites (Gelderblom & Menge,
2018), and x-rays (Drew, Võ, & Wolfe, 2013) even though
visually fixated upon. In situations of high cognitive load, it
is easy to miss even something as surprising, or out of place,
as a gorilla in the center of the visual field. It should therefore
come as no surprise when people, focused upon other details,
routinely miss changes in system state or in the environment.
While ultra-reliable systems and self-checking components can
reduce the threat from silent failure, they cannot be eliminated.
A wiser solution may be encouraging appropriate reliance
and encouraging greater attention and vigilance, of course
considering human limits in maintaining vigilance and situation
awareness.

The most important design note for A3 architects concerned
about workload may be that the same amount of demand across
multiple multimodal channels can produce lower overall subjec-
tive workload, as compared to moving the same demand over a
single modality (Wickens, 2002). A3 further provides opportu-
nities to reduce workload in operators by filtering information
provided. Rather than monitoring many indicators, an operator
can attend to a supervisory system, or interact with an inter-
face that controls many subsystems. The risks of this approach
are that a supervisory system itself can fail, oversight in design
could compromise its performance, or attention can be directed
away from this system’s interfaces (Sheridan, 2006; Sheridan
& Verplank, 1978). Cognitive focus can be controlled volun-
tarily, or by an external agent (Wickens, Santamaria, & Sebok,
2013; Wickens et al., 2016), but if A3 is tasked with controlling
or directing attention, it must be highly reliable, be appropriate
for the environmental conditions, and use appropriate modali-
ties for signaling. In this regard, use of modalities by A3 can be
strategic, assuming A3 has adequate awareness of human state.
For example, A3 with awareness that the operator visual chan-
nel is occupied, might issue a haptic or audible alert, or issue a
visual alert in the field of the user’s peripheral vision. This has
strong parallels in human–human interaction, where an individ-
ual looking away might be engaged with a tap on the shoulder,
or hearing their name spoken. The error rate of systems is rele-
vant here, as systems prone to false alarms may encourage users
to become attuned to ignoring alerts, and therefore miss true
alerts or delay responding to them (Wickens, 2013). Systems
more prone to misses may encourage greater human vigilance
(Fu et al., 2019), but automation misses may have drastic con-
sequences if unchecked.

The prevalence paradox (Sawyer & Hancock, 2018) is one
common form of A3-induced operator propensity to miss sig-
nals. Humans need a certain amount of information to under-
stand the world, and so rare signals are more difficult to find,
even when taking into account their low occurrence. Indeed,
these failures-to-find represent diminished human capability to
both detect and respond, a recognized, and often deadly prob-
lem in contexts including air traffic control, baggage screen-
ing, and cancer diagnosis. A3 often work to reduce the work of
the human by handling events that occur, but in doing so they
are removing information the operator needs to understand the
world, and so making humans in their team increasingly likely
to fail in detecting and reporting remaining attacks. When A3

successes become the seeds of human failure, what implications
for human–machine teaming must arise from this prevalence
paradox?
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In vision, the “attentional spotlight” theory (Norman,
1968; Posner, Snyder, & Davidson, 1980) describes atten-
tion as a single cognitive focus that can be steered toward or
attracted to stimuli, and recent understanding shows that it
is joined by highly sensitive peripheral vision encompassing
the remaining visual field. Other research has introduced a
concurrent performance model (Navon & Gopher, 1978; Wick-
ens, 2008) to complement the sequential processing models.
The Noticing-Salience Effort Expectancy Value (N-SEEV)
model (Wickens, 2013) and the threaded cognition models
(Salvucci, 2013; Salvucci & Taatgen, 2008, 2010) address both
the sequential and concurrent processing paradigms. Wickens
et al.’s (2016, 2017) research on attention switching has led
to the development of the Strategic Task Overload Manage-
ment (STOM) model, which predicts that in a condition where
there are insufficient attentional resources to meet demand, a
load-shedding process will be initiated, where preferential focus
is placed on high priority, lower difficulty, engaging, and highly
salient tasks.

Task switching is not only a problem for pilots and system
operators: the amount of time computer users spend on a focal
task before switching between windows or tabs is on average
only a few seconds (Yeykelis, Cummings, & Reeves, 2014,
2017). Research by Reeves et al. (2019) investigated task
switching in computer use, finding that the ability to switch
the content displayed on a single screen makes possible the
“fragmentation of experience” in a way not possible with
other media such as books, or even other types of displays.
Yeykelis et al. also found evidence for rising autonomic arousal
anticipating switches from “work” to “entertainment,” but not a
corresponding rise when switching away from entertaining to
less entertaining stimuli. This reinforces the claims of engage-
ment as an important component of the STOM model where
it is more difficult to cognitively release from engaging tasks,
even in critical situations (Horrey & Wickens, 2006).

Task focus has been commonly measured in laboratory
settings using eye tracking, often in concert with other psy-
chophysiological measures such as event-related potential
(ERP). Eye tracking and face tracking have been employed
in research on partially-automated driving, and systems that
measure vigilance and attentional focus are being installed in
currently available vehicles, for example as part of General
Motors’ Supercruise, although, as of this writing, questions
remain as to the suitability of such monitoring technology
for the task of maintaining driver focus (Bergasa et al., 2006;
Lopez, 2019; Wolfe et al., 2020). These mechanisms of opera-
tor monitoring present an opportunity for adaptive automation
systems to reorient a driver’s or operator’s cognitive focus to the
target task if attention is directed away from it, and to change
modality of alerts to increase the likelihood of attending to
relevant signals. The screenomics methods of using screenshots
to measure task focus in ecological settings are useful for
measuring the activity of computer users, but may be highly
intrusive and raise the risk of compromising privacy and security
(Reeves et al., 2019). The sub-method of measuring switching
frequency, rather than evaluating content, may present fewer
risks of releasing sensitive information, but is still a surveillance
technique. Employing these methods should be considered
carefully with respect to the utility of measuring task focus and
focus switching, as part of an overall attention to data security
and respect for individual user rights, including privacy.

3.3 Adaptable and Adaptive Automation

Adaptable automation provides operators or users the ability
to control the level of automated system agency, or potentially
to decide if it is active at all. They can therefore tailor the
automation’s level of agency to their needs, provided they

can do so in a wise and safe manner. This freedom can allow
operators to address unforeseen circumstances or those beyond
automated system capabilities (Miller & Ju, 2015). If Arm-
strong and Aldrin had been unable to take control of piloting
the lunar module when they realized the automated landing
system was taking them into a boulder field, they would have
had to abort the landing, or could have crashed on the lunar
surface. If operators trust the system appropriately and have a
well-calibrated mental model of its capabilities, they can use it
properly; but if there is a mismatch, adverse consequences may
result. It is not always a wise idea to give operators full control
of automated systems, especially those meant to ensure safety:
the operators of Chernobyl reactor 4 disabled the automatic
control rod management system to allow manual control of
the reactor beyond its design limits, with catastrophic results
(IAEA, 1992). Even though trained, they were inadequately
informed and unaware of the potential catastrophic failure
modes of the reactor (which were known, but unpublished), and
the risks they were taking by pushing the envelope. Had they
followed established protocols, or had the controls prevented
excursion beyond the reactor’s safe operating parameters, there
would not have been a disaster. If the system had been designed
with an anticipation that operators might attempt to place the
reactor in an unsafe configuration, the controls could have been
designed to prevent this. Understanding users is therefore a
critical part of system design, as it permits the needed flexibility
without opening opportunities for abuse (Parasuraman & Riley,
1997).

The flexibility of adaptable automation also can add task
load, most critically at times of high stress, or when automated
systems may not be engaged in a supervisory role when needed,
if they must be manually engaged. Cook et al. (1991) term
this problem “clumsy automation” and consider “user-centered
automation” to be a solution. User-centered automation takes
into account the needs of the users and context, using a tech-
nique such as cognitive function analysis (Boy, 1998) to foresee
such conflicts. Especially in environments with multiple agents,
both technological and human, it is important to determine the
optimal design for technologies, the configuration of human and
machine roles, and to ensure adequate communication between
them. In designing automated systems and their controls,
interfaces should encourage proper use and cue recognition of
optimal responses, rather than forcing operators, likely under
stress, to use imperfect memory or slow checklists. Therefore,
the design process should include evaluation of normal and
abnormal situation procedures and include how systems can
support recovery from adverse events, as well as ways to
avoid them.

Adaptive automation, as an extension of adaptable automa-
tion (Atkinson et al., 2012; Inagaki, 2003; Kaber, Riley, Tan,
& Endsley, 2001) promises to remedy some of the problems of
human–system interaction by adapting the actions of the system
to address the needs of humans in the moment, due to the level
of state, trait, and training factors. Automation can be adaptable
through dynamic function allocation: assigning functions to
itself, other technological agents, or human operators rather than
forcing the task of agency allocation onto humans. This con-
ceptually approaches Licklider’s (1960) concept of symbiosis,
where there is a close and dynamic relationship between human
and machine agents in a partnership arrangement. Designing
such a system is similar to adaptable automation systems, with
a further focus on how the system should allocate tasks between
agents, based upon monitoring the capabilities of a human user
or users in the moment, ideally using nonintrusive measures,
such as machine vision or assessment of workload.

Adaptive systems may be perceived as behaving erratically
or unpredictably if operators are not sufficiently knowledgeable
of its dynamic nature and changeable actions. This may reduce
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adaptive systems’ utility and safety in applications where users
cannot be expected to have an accurate mental model and
well-calibrated trust model of the system (Atkinson et al., 2012;
Fu et al., 2019; Hancock et al., 2011). Research on adaptive
automation by Sauer et al. (2013) using a simulated process
control task found that with regard to effort expenditure, mental
workload, and diagnostic performance, the adaptable automa-
tion provided advantages over low and intermediate levels of
static automation. Furthermore, operators would select higher
levels of automation under conditions of environmental stress
compared with times of quiet conditions. While automation has
significant benefits, Flemisch et al. (2008) state that automation
can also have different drawbacks with respect to the interaction
between humans and complex technology. While Parasuraman
et al. (2000) proposed two dimensions for the continuous “levels
of automation,” Flemisch et al. (2008) indicated that the essen-
tial elements of automation could be efficiently communicated
with a one-dimensional spectrum of continuous automation
degrees. Importantly, transitions between levels of automation
can be between adjacent levels as well as non-adjacent levels,
potentially providing an automation surprise (Sarter et al., 1997)
if a system rapidly and dramatically increases or decreases its
level of agency. As transitions between levels can be initiated
by an operator and by the system, the system must sufficiently
communicate changes of state, act in a predictable manner, and
prevent inadvertent user-initiated changes of state. Flemisch
et al. (2008) further discuss human–machine compatibility in
terms of ease of user interaction, user understanding of system
actions in each situation, and role-sharing between humans and
A3. This is dependent upon knowing what the A3 does, why it
does what it does, and what its intents will be, creating a mental
model of the system’s capabilities. The interplay of perceptual,
interactive, and intentional processes is illustrated in Figure 7.

Perhaps the earliest adaptive automation systems are the
dead-man’s switches used in industrial systems and in trains,

interact

intents

perceives perceives

act

intents

Figure 7 Humans hold a mental model of the system and the

environment—and A3 systems correspondingly hold an image
of the human user(s) and environment. The two agents can col-
laborate in acting on the environment, through operationalizing
their intents in an interactive manner. This is a continuous pro-
cess, where the model of the environment is continually updated
through perceptual processes. (Source: Adapted from Flemisch
et al., 2008.)

which ensure the operator is present and ideally situation
aware—and provide an alert or automatically stop the system if
not. Vigilance-measuring systems have improved over the past
century, and are now becoming a part of the A3 systems avail-
able to members of the general public. Most, if not all, current
vehicles with adaptive cruise control and lane keeping (SAE
level 2) include some form of vigilance management feature,
often a sensor on the steering wheel that detects the presence of
a driver’s hand. This may ensure that the driver has their hands
on the wheel, but does not ensure they are situation aware,
attending to the roadway environment, or even awake (Baker,
2019). An approach using eye tracking and/or face tracking can
determine if a driver is alert (Caffier, Erdmann, & Ullsperger,
2003), and attending to the ambient environment, but the
performance of systems such as General Motors’ Supercruise
(McGehee et al., 2016) is still insufficient to achieve the aims
of ensuring vigilance and situation awareness. As A3 capacities
and sensing abilities increase, it becomes technically feasible
to measure and classify eye gaze, and to detect arousal using
minimally-intrusive sensors. Ensuring the driver’s attention is
focused on the roadway is a step in the correct tdirection, but
does not encompass all of the needs of vigilance monitoring.
Perhaps a positive approach here is ensuring engagement with
driving, assisted by automation to reduce active fatigue, rather
than fighting passive fatigue due to placing the driver in the role
of a largely passive supervisor (Körber, Cingel, Zimmermann,
& Bengler, 2015).

Consider a driver who is falling prey to drowsiness, or whose
attention is diverted by an alternate task. It would seem logical to
require an automated system take over more of the driving task,
but this may in fact lead to further disengagement, and reduce
the driver’s availability if human agency needs to be called upon.
Essentially, the design challenge here is to keep the operator in
the loop. One solution would be to increase the requirements on
the driver, increasing their engagement in the driving task, pro-
vided they are capable of driving safely, with help from automa-
tion. If the driver cannot drive safely, for example, due to active
fatigue or other impairment, the system must take over more of
the driving task, and operate without human backup.

3.4 Explorable and Transparent A3

As previously mentioned, the strategy of documenting A3 in
traditional ways such as regimented training and thick instruc-
tion manuals is flawed. A possible remedy is Explorable A3,
designed to be explored without adverse consequences or undue
risk. Features analogous to the “undo” capability, or version
tracking, are ideal examples of how to allow such exploration,
when it is technically feasible. Where actions are irreversible,
design should, if possible, support a preview of what an action
will do before a user commits to an irrevocable change. For
example, an image editing program may provide the option
of testing the effect of an image processing filter before it is
applied to the source image, while an automated vehicle or a
navigation system might show a symbolic simulation indicating
that merging into traffic in an upcoming exit would involve
a longer delay than driving to the next. Confirmation before
an irrevocable action is taken is another example of a strategy
from traditional software that can easily be applied in many A3

applications to avoid costly mistakes, or at least reduce their
frequency.

A3 can provide varying levels of information about intent,
performance, future plans, and reasoning processes, and this
descriptive characteristic can be referred to as transparency.
One way to think about transparency is as providing human
teammates with SA regarding purpose, process, performance
reasoning process, projected future, and potential limitations (J.
Y. Chen et al., 2014). Humans expect to explain their decisions,
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Figure 8 Full model of factors that influence trust in automation and reliance on it, in the categories of personal characteristics, knowl-
edge, and system factors. The dotted arrows represent factors that can change within the course of a single interaction. (Source: Adapted
from Hoff and Bashir, 2015.)

from trivial to high consequence, to themselves and others,
and proponents of Explainable AI suggest holding A3 to a
similar standard. A key factor in this approach is understand-
ing human-to-human communication, especially how humans
describe their own reasoning and explain their own choices. This
includes acknowledgment of both strengths and weaknesses,
discussion of intrinsic biases, and strategic considerations such
as available time (Wang & Siau, 2019).

Chen et al. (2014) identified important HF/E issues related
to human–A3 teams in the context of multi-robot control and
successful human–agents interactions for the supervision of
multiple intelligent systems. These issues include appropriate
human trust in the automated systems, individual differences in
human–agent (H–A) interaction, efficient human supervision
of multiple robots, maintenance of human operator’s situation
awareness, and retention of human decision authority. They
concluded that it is essential to assure automation transparency
and include information about human individuals’ differences
as part of the human–agent design process. Transparency should
include the current and future states of multiple intelligent sys-
tems, as well as the intent of the agent acting as an intermediate
supervisor.

Such capabilities are presently at the edges of technological
feasibility, and modifying deep learning techniques to extract
explainable features does not necessarily mean that interpretable
models will result. As such, most present approaches leverage a
combination of such explainable feature extraction and “model
induction” in which explanations are inferred from the neural
net behavior (Hagras, 2018). In a task, therefore, a system can
decide to use available explanations to justify itself to the user.
The result, interestingly, is A3 which cannot always fully explain

its own actions, much as one might expect from its human coun-
terpart. An obvious follow-on question is how trust can be appro-
priately encouraged in users of such systems (and see Hancock
et al., 2020).

3.5 Building Trust

Mayer et al. (1995) state that “the need for trust arises only in
a risky situation” (emphasis in original). While Mayer et al.’s
research reviewed trust in human organizations, their conclu-
sions hold in human–A3 trust as well. This is a result of the way
humans unconsciously relate to “interactive media,” in a manner
similar to their interaction with humans (Nass, Fogg, & Moon,
1996; Nass & Moon, 2000; Reeves & Nass, 1996). Meyer and
Lee (2013) describe trust as a cognitive concept, and reliance as
a behavioral construct. Conceptually, trust in human–machine
interactions encompasses three components: (1) there must be a
“truster” to give trust, and there must be a trustee to accept the
trust; (2) the trustee must have some sort of incentive to perform
the task; and (3) there must be a possibility that the trustee will
fail to perform the task. Indeed, these stages mean that trust may
be a construct which unfolds over time, both at the individual
and societal level (Kaplan et al., 2020).

Hoff and Bashir’s trust model includes three layers of
variability in human–automation trust: dispositional trust, situa-
tional trust, and learned trust (see Figure 8). These components
of trust, which in turn influence reliance, are influenced by
personal, situational, and system factors. Trust develops over
time and is continuously reevaluated with respect to system
performance. A system that is initially treated with skepti-
cism can engender trust through demonstration of adequate
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performance; a system that demonstrates failures in technical
capacity or goal incongruence will erode human trust in it,
and as a result reduce reliance on it. Hoff and Bashir (2015),
Verberne et al. (2012, 2015), Takayama et al. (2009), and Nass
and Moon (2000) recommend that designers should increase the
automated system’s degree of anthropomorphism, politeness,
ease of use, and transparency to promote better calibrated trust
in systems and to forestall automation disuse. These social fac-
tors related to trust and reliance stand in addition to evaluations
of pure technical performance. Verberne et al. (2015) found that
an embodied agent system that shows a visible facial likeness
to the user can engender greater feelings of trust, independent
of behavioral factors. This is analogous to homophily, the way
humans instinctively relate more strongly to similar persons
(Rogers & Bhowmik, 1970).

Weitz et al. (2020) used A3-based virtual agents and devel-
oped an explainable A3 system to improve the trust of end users
in human–A3 interaction. Their research concluded that using

virtual agents in an explainable artificial intelligence system can

improve users’ trust. Also, the study indicated that combining

voice output with the virtual agent was more effective than using

virtual agents alone. Siau and Wang (2018) identified that trust
is crucial in developing and accepting A3 technology. The main

elements of trust in automation are shown in Figure 8, while the
technology features of A3 that affect trust-building are illustrated

in Figure 9 and Figure 10.
Rapid advances in A3 have created new opportunities for

users to interact with automation (Oh et al., 2018). Van Maanen

et al. (2005) indicated that a vast proliferation of A3 applica-

tions leads to a shift from simple human–machine interactions to
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more complex cooperative human–A3 interactions that require
a multidisciplinary approach. The development process of such
human and A3 cooperative interaction is shown in Figure 11.

Sujan et al. (2019) discussed using A3 in patient care and
the necessity to put much more effort into developing the new
A3-based technologies. They advocate for increased focus on
human factors in A3 technology for clinical processes and
services, with due consideration of automation bias, impact on
human performance, handover, situation awareness, and patient
interaction. Van der Vecht et al. (2018) discussed the promising
paradigm of human–machine teaming (HMT) and introduced
a framework for the efficient development of HMT concepts.
The proposed framework has a modular social layer between
autonomous systems and human team members to improve
teamwork as shown in Figure 12.

A3 systems need to be both trustworthy, and communicate
that they are trustworthy, in order to encourage users to form
appropriate trust in them (J. D. Lee & See, 2004). A risk is
overtrust, and systems which appear to have greater capacities

than they actually exhibit can engender inappropriate reliance,
leading to adverse situations. As in human–human trust, the
results of A3 overtrust are diverse, and sometimes strongly
negative. A related threat is de-skilling: if operators rely on
a system that is normally trustworthy and helpful such as the
glide-slope indicator or auto-landing system in an aircraft,
problems can result when that system is unavailable to help.
This over-reliance has been noted as a contributing factor in
several airplane crashes where pilots’ skills were insufficient
without the assistance of automation.

3.6 Security Design

It is comforting to imagine a world where all humans and
A3 together work to conquer outside challenges, rather than
one where some portion of humans and machines are those
challenges, but no design is complete without considering secu-
rity. Human users represent the largest attack surface in most
socio-technical systems (Sebescen & Vitak, 2017). Malicious
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cyberthreat actors are acutely aware of this vulnerability and
deliberately work to exploit it by employing Remote Online
Social Engineering (ROSE) techniques to influence individuals
inside the organizations they target. Phishing, and vishing (voice
phishing), have become household terms, daily occurrences,
and a constant source of threat.

While algorithmic cybersecurity works valiantly to elimi-
nate the threat of ROSE attacks, A3 to augment cybersecurity
are presently not the most effective form of protection. HF/E
practitioners have long argued that design should be leveraged
as a deterrent, and a defensive boon, but these efforts are still
all too rare (Gutzwiller, 2015; Vieane et al., 2016). In fact,
the primary method that organizations use to counter ROSE is
training, and the design and implementation of security educa-
tion, training, and awareness (SETA) programs for employees
(Y. Chen, Ramamurthy, & Wen, 2015; D’Arcy & Hovav, 2008;
Yoo, Sanders, & Cerveny, 2018). A characteristic shortcoming
of this training is that it often provides the same training to all
employees, regardless of job role, technical sophistication, or
personal susceptibility to ROSE attacks. A major component
of SETA programs is the employment of simulated phishing
email campaigns that mimic actual malicious phishing email
campaigns. These simulated phishing emails are intended to
provide a form of inoculation for employees against malicious
emails. This training is very realistic and can be one of the most
effective ways to prepare users to avoid real phishing attacks
as the campaigns replicate attacks that have successfully and
adversely affected other organizations (Carella, Kotsoev, &
Truta, 2017).

Simulated phishing also provides valuable data on employee
responses to simulated phishing attacks, which allows re-
searchers to better understand the characteristics of user
responses. From this data, two interesting archetypes of user
patterns begin to emerge. First are a subgroup termed “repeat
clickers.” These individuals are those employees who con-
tinually fall victim to phishing attacks, regardless of message
content or environmental influences (Canham, Posey, & Bock-
elman, 2020). A 2015 PhishMe report states that in an analysis
of over 8 million simulated phishing emails “67% of employees
who respond to simulated phishing attacks are repeat victims
and therefore likely to respond to phishing emails more than
once” (PhishMe, 2015). Thus, while some in the general popu-
lation might fall for phishing attacks occasionally, this subgroup
is much higher than the average. The second group represents
the other tail of the distribution. These individuals actively seek
to determine whether an email is phishing and then report those
emails they believe to be malicious, to help protect the orga-
nization and their fellow colleagues from those threats. These
users are labeled “protective stewards” whose actions help assist
rather than detract from organizational cybersecurity efforts
(Burns et al., 2018; Posey et al., 2013). When they believe they
have detected deception, employees have the option of ignoring
the email or reporting the email as a suspected attack. When
reporting, some organizational security departments ask users
to forward the emails to their security representatives so that
they can inspect the message for possible phishing activity, and
others have activated technological solutions that make it easier
for user reports of suspected phishing attacks to take place.
Often, the inclusion of report buttons within email interfaces
greatly simplifies this task by quarantining the email, alerting
the security staff of the potential threat, and releasing the email
back to the employee if the security staff deems it a false alarm.
This action of making security easier for users represents a best
practice that should be deployed more widely.

Resources within information security departments are
often severely limited. Being able to better allocate the lim-
ited resources that are available would provide significant
benefit to security operations staff. Research suggests that

resources should not be uniformly distributed but rather should
consider the relative strengths and weaknesses of an organiza-
tion’s user population (Canham et al., 2020). While security
departments should tailor their SETA efforts toward their
respective employee subpopulations, designers can also con-
tribute significantly to ensuring security against threat actors
by building systems that will enable security operations staff
to tailor solutions to different users according to their indi-
vidual susceptibility patterns rather than applying the same
levels of security protocol regardless of individual differences.
Adding additional protections for the most vulnerable users,
while empowering those who show the most promise toward
protecting the organization, security departments will be able
to increase their own effectiveness and see a better return on
investment with already limited resources. Likewise, SETA
programming strongly centered on phishing would be more
beneficial for the employees who are repeat clickers rather
than forcing those who are protective stewards to endure the
same intervention. Such an approach indicates the need for
organizational SETA programs to go beyond decreasing risk
by also incorporating aspects that help build, strengthen, and
maintain employee motivations to engage in positive behaviors.

3.7 Design Strategies and Frameworks

In human-centered design of A3 systems, important strategic
differences exist between approaches to focusing upon the
human. For example, constrained design and unconstrained
design are engineering-based approaches to addressing the
increased demand that accompanies human–A3 interaction,
especially in contexts where a high-stakes activity involves a
crucial primary task, such as driving (Skrypchuk, Langdon,
Sawyer, & Clarkson, 2020). Constrained design approaches
provide goals for the maximum portion of user capacity an auto-
mated system should occupy, and may in fact be codified within
an organization, legislated, or otherwise related to standards.
An example of constrained design would be the limiting of
typing input functionality while a vehicle is in motion. Because
this approach fundamentally curtails the overall capabilities
of the system, and in doing so curtails the available actions
available to a user, constrained design can result in frustrated
users. Motivated, frustrated users may indeed actively work
to circumvent behavior intended as a protection. This can
lead to a “cat and mouse” situation, and in extreme cases to
systems with significant risks that sit alongside those risks they
were intended to prevent. For example, legislatively mandated
alcohol interlock devices installed on the vehicles of individuals
with a history of drunk driving have grown so complex that
they are themselves a significant distracted driving hazard.
Software interlocks on current generation cell phones require a
multiple click effort to disable while driving, potentially leading
to a similar pitfall. Conversely, unconstrained design considers
trade-offs between interaction with A3 and users, and works to
balance interaction design with competing goals. An example
can be found in guardian angel automated driving approaches,
which assist the driver in driving safely, and should the driver
be unable to safely accomplish the driving task, automation
can guide the vehicle out of the roadway and park safely at
the side of the road. It is important to realize that these design
perspectives are not exclusionary of one another, and that,
given the overriding goal of task success in safety, either and
both may be appropriate. It is also important to realize that
whenever user action is curtailed, there is the potential for loss
of trust and attempts to circumvent limitations (Guttman &
Gesser-Edelsburg, 2011).

The Design Thinking process (Gibbons, 2016) is one frame-
work which can be applied, in concert with consideration of
HF/E principles, to increase the likelihood of producing usable,
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safe, and pleasurable products of design. Design begins with
user research: who will use the product, service, or system,
and to pursue what goals? What risks are there of misuse or
error? Observing the current users in the contexts where use
is expected will provide an important base upon which devel-
opment can begin. It is essential to empathize with users and
understand what they do and under what conditions. What do
they say about the current situation? What do they feel about it?
The second stage is to define problems that can be addressed.
Designers must develop insights from the empathetic research
stage, by identifying unmet needs, desires, and pain points.
Designers then ideate, brainstorming a large range of ideas;
the more, the better. Involving users in the ideation stage can
be helpful, especially if specialized knowledge is necessary
for the tasks performed. Prototypes can vary in fidelity from
simple sketches to full simulations--and for this process, all are
valuable. Cheap and fast prototypes are ideal for concept refine-
ment, high fidelity prototypes can be used for user testing before
committing to production. Testing can be time-consuming and
expensive, but with A3, implementation can be enormously
costly, and errors can have deadly or society-damaging con-
sequences. The final step is implementation, and ongoing
evaluation of the performance of the product. Especially with
software or software-defined systems, updates can be applied
to remedy deficiencies. Every step in this process should refer
back to prior stages, and work in harmony with the empathetic
research stage. Constant reference to the needs of intended users
will help to produce a product that meets needs and satisfies
actual wants, rather than assumed ones (see Figure 13).

Value Sensitive Design (VSD) (Friedman, 1996; Friedman,
Kahn, & Borning, 2002; Friedman, Kahn, Borning, & Huldt-
gren, 2013) provides a toolset for incorporating human values
into the design process, and it is well worth considering the
moral and ethical values that are inevitably embedded into

products of design. VSD is comprised of three investigations:
conceptual, empirical, and technical. The conceptual compo-
nent is comprised of a stakeholder analysis, a determination
of who is influenced by or interact with a system, as well as
a determination of stakeholders’ values and an analysis of the
tensions between values. An example of stakeholders related
to an anesthesia delivery system would include physicians
and nurses, as well as patients, even if patients never interact
with the system’s interface, and the values they would pur-
sue would include safety, efficiency, and system flexibility.
The empirical component encompasses research that informs
designers’ understanding of user needs, situated behaviors,
and practices. Technical investigation covers analysis of the
affordances of the technologies employed, focusing on artifacts
rather than stakeholders. These three components, integrated
into a user-centered or participatory design process, can aid
in surfacing and addressing the values of stakeholders and the
tensions between them. An example of values in tension is the
desire to provide privacy and security of personal data, and
the need to provide enormous training datasets to A3 systems.

Designers must weigh the risks of capturing and storing
sensitive data which could be exposed, against the benefits
anticipated from the deployment of a system that could perform
important work, such as identifying markers of disease. They
must also constantly consider the contribution, or lack thereof,
of the human in-the-loop. Radiologists partnering with detec-
tion A3 may miss cancers, and drivers partnering with ADAS
may miss roadway obstacles, and these failures among others
can be minimized through design consideration.

3.8 Tandem Failure and Mutual Reinforcement

If an automated system is supervised by a human, or a human
is supervised by a technological system, and both fail in their

Release to Subpopulation

Broad Release

Empathize Define Ideate Prototype Test Implement

Understand Explore Materialize

Figure 13 Frameworks for the design carried out by humans can be incorporated into the ongoing improvement of A3 systems, and that

improvement itself can be the work of hybrid intelligence. An iterative version of an A3 technology can be analyzed to build understanding,
explored, and new capabilities materialized before being released to a subpopulation to gather data for an additional cycle, while at the

same time feeding into the broad release of the A3 product. As such, teams of humans and A3 together refine an overarching A3

technology. (Source: Adapted from Gibbons, 2016.)
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Table 1 Humans and A3 Can Act as Mutually-Reinforcing Agents. If Both Fail at the
Same Time, It May Be Difficult or Impossible to Recover from a Tandem Failure Situation

A3

Correct Incorrect

Human Correct All is well Operator should override system

Incorrect System should override operator

tasks at the same time, the combined system will fail to achieve
success in the overall task (Sheridan, 1992a). The stakes have
been as high as “apocalyptic.” We are reading this only because
in the early hours of September 26, 1983, Stanislav Petrov
evaluated the signals from the Soviet Union’s early warning
satellite network against his own knowledge and intuition and
deemed the alert of a NATO attack erroneous (Lebedev, 2011).
We all owe a debt of gratitude not only to this courageous
individual, but to those who trained him, and the designers
who built a system capable of conveying subtext allowing him
to deduce that the attack he saw was false. Automation has
prevented disasters as well, both large and small. The lives
saved by antilock brakes and electronic stability control go
largely unsung, but these are but a few of the technologies
preventing automotive crashes that otherwise would have
occurred (Farmer, 2004, 2006). Many A3 successes in other
areas go likewise uncounted—improving medical diagnostics
and weather analysis improves the life of millions, but this is
often overshadowed by stories of high-profile failure.

In many applications, humans monitor systems, providing
an error-trapping role. Unfortunately, humans are ill suited to
supervision, especially prolonged supervision (N. H. Mack-
worth, 1948; Sheridan, 1992a). Fitts et al. (1951) state that
systems should monitor human performance, which places the
near-infinite attention of a machine in a role to which it is well
suited, and can allow humans to use their skills in applications
demanding cognitive flexibility and evaluation. Combining
human and machine capacities to reinforce each other offers
the greatest total envelope of performance and safety, and roles
should be assigned based upon an understanding of human
and machine capabilities, both in terms of trait and state fac-
tors. Adaptive automation (Inagaki, 2003; Kaber et al., 2001)
can assist in this, by allowing for dynamic change in roles,
dependent upon conditions. Unfortunately, there is no way to
completely solve the problem of tandem failure (see Table 1)
where both human and A3 systems fail simultaneously, but
good system design can reduce the prevalence and seriousness
of those situations. They can also be mitigated through testing,
and training, ideally in a low-risk proxy environment.

3.9 Testing and Training with Simulation

For A3 systems designers, simulation is an opportunity to obtain
vital data inexpensively, and without real-world risk. For human
operators, simulation provides a similar opportunity to acquire
experience interacting with A3 systems, and is invaluable
to pilots, drivers, physicians, and others. Simulation can be
used for research and for training simultaneously, and HF/E
research regularly involves simulated environments in which
hybrid teams react to real-world challenges. Indeed, a major
use of simulation is for research and regulatory validation of
human–A3 interaction design. With the increasing availability
and decreasing barriers to use of simulation, simulation is sure
to be a growth area for data generation, human training, and
industrial, academic, and regulatory research.

At its best, simulation offers high experimental and ecologi-
cal validity (Campbell, 1957; Orne & Holland, 1968; Reichardt,

2011), ability to elicit naturalistic behavior (Harrison, Haruvy,
& Rutström, 2011), and high applicability for psychology,
HF/E, and human–computer interaction research (Blascovich
et al., 2002). Virtual reality, either using a head-mounted display
or CAVE-type environment (Cruz-Neira, Sandin, & DeFanti,
1993), which includes automotive and flight simulators, pro-
vides an ideal environment for both research and training,
provided they offer a sufficient level of presence (IJsselsteijn
et al., 2000; K. M. Lee, 2004a; Sheridan, 1992b; Slater & Usoh,
1993). Presence can be described as a sense of “being there”
(Igroup Project Consortium, 2015) in a virtual environment, and
high presence elicits naturalistic behavior as a result of cognitive
processes related to human treatment of media experiences as if
they were real experiences (K. M. Lee, 2004b; Reeves & Nass,
1996). Even if we know that the simulator cannot move, and the
other vehicles on the “road” are merely images, drivers in the
simulated environment act as if the virtual threats are real, both
physiologically and behaviorally.

“Fidelity” is a common term in simulation, too often linked
to visual complexity and too little linked to its more useful
grounding in relevance to the question being asked. Some of
the earliest transportation simulators, Link trainers (Jeon, 2015)
which reproduced the instrument readings and simulated propri-
oceptive cues of flight to provide instrument flight training, can
be described as high fidelity, and produced valid re-creations
useful to human trainees with high efficiency and no crash
risk. In the following years, simulators became more advanced,
and integrated increasingly sophisticated visual features, first
through cameras on gantries over miniature environments,
and later via computer-generated scenes. While high mundane
realism (Aronson, Wilson, & Brewer, 1998; Difonzo, Hantula,
& Bordia, 1998; Dobbins, Lane, & Steiner, 1988) is ideal,
photorealistic visuals are not necessary. Rather, providing as
engaging an environment as possible is more important in terms
of eliciting naturalistic responses. This scene-setting can include
a narrative around the experiment, potentially including a degree
of deception, to avoid cueing participants to consciously control
behavior to match experimenter expectancies. Validity can also
be enhanced by removing or minimizing edges of the virtual
environment so that the real world minimally intrudes, and
by using time pressure (if warranted by the situation) to focus
attention on the issue at hand and reduce participant ability
to think about the situation at a meta-level before responding.
Breaking presence by stopping time, for example, when using
the SAGATmethodology to study situation awareness (Endsley,
1988; Sirkin, Martelaro, Johns, & Ju, 2017) or when studying
decision making where social desirability bias is a significant
validity threat (Wintersberger, Frison, Riener, & Hasirlioglu,
2017), may reduce the ecological validity of findings, and
thus choices regarding adjusting time in simulation research
should be carefully evaluated. Therefore, fidelity and ecological
validity together must be considered to determine whether a
simulator is providing valid data, for whatever purpose.

A drawback of simulation for A3 training and validation is
that the environment does not have the richness of the outside
world, and so human trainees may be ignorant of true risks and
machines trained on the data may be fragile, exhibiting edge
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case behavior in naturalistic environments. This may present a
problem for testing A3 systems in simulated environments, as
has been employed in the autonomous vehicle space with the
A3 software being tested in simulated environments rather than
on the road (Huang et al., 2016). Constructed environments
can strategically over-represent features that are rare in the
natural environment (Kelly et al., 2018), an important benefit of
simulation when compared with testing and validation natural
environments. The threats of the real world present an open set,
where in addition to polite and predictable pedestrians, there
are all manner of unpredictable things out in the road environ-
ment. Animals, fallen cyclists, unpredictable human behavior,
obstacles in the roadway, all must be properly included in simu-
lations if the A3 driving systems they train are to avoid edge case
behavior. Even if the risk of a fatal crash is between 4-40 per
billion vehicle-kilometers, there are many vehicle-kilometers
driven every day, and thus over a million fatalities worldwide
annually.

Simulation provides an ideal locale for training (Kozak,
Frison, Riener, & Hasirlioglu, 1993) and has long been used
for training users in how to use automated systems. This has
in the past been limited to professional users such as pilots,
military personnel, and industrial operators. Today, the rapidly
improving capabilities of VR, increasing ease of constructing
virtual environments, and dramatically decreasing price, have
all made simulation a broadly viable training mechanism.
While a full-motion simulator or complete nuclear power plant
control suite is an ideal environment, even a low-cost HMD or
desktop VR system can provide adequate presence for training,
and for research, and with the proliferation of such systems
enabled by the continued increase in computing power avail-
able for economical prices, this is a strong growth area with
many opportunities available to provide training where it was
previously difficult or impossible.

Simulation is notably useful for studying driver–vehicle
interaction, as simulators can reveal driver behavior without
physical risk, and with a perfectly repeatable driving environ-
ment, which is not possible on the road. Most drivers have
minimal formal training and thus automated systems must be
designed to offer adaptive support that can accommodate new
drivers, older and impaired drivers, and experts, through user
control or self-adjustment. To ensure such systems work well
for a wide variety of drivers, substantial usability research is
needed, and this can be afforded through simulation of A3

systems in environments and situations where reliance on or
conflict with A3 will occur. The future is a big place, and so
simulation is moving far beyond driving, or any single context.
Indeed, a substantial number of human factors researchers and
engineers are now engaged in simulating potential systems-level
futures for A3–human teamwork, and determining whether they
are worthy of investment, or avoidance.

4 TOWARD, AND BEYOND, A PRIMUM NON

NOCERE OF A3

At this moment in history, humanity’s brightest minds are hard
at work attempting to create at least one new type of intel-
ligence through A3. The discussion of what this intelligence
should be, how it should interact with humans, and whether we
should trust it, is in no way new. A3 has been part of human
storytelling and philosophy for thousands of years, automata
emerging as playthings of the Greek gods, the mythical Golem,
machines like the Mechanical Turk, and modern-day mass
internet movements of humans collectively building illusions of
autonomy (see also Geoghegan, 2020). In very narrow contexts,
this dream is already realized, and we stand on the precipice
of having it realized far more broadly. Hancock describes

this remapping as a rising tide of increasing A3 capability,
at first eroding the major continents of human activity, then
eventually relegating select activities to increasingly isolated
and shrinking islands. In this world, what were for the most
part philosophical debates have become pressing business,
regulatory, and personal considerations. In this conversation
regarding what machines should be to humans, HF/E is vital,
not only to human-centered A3, but to the quickly evolving
system element, driven by continued cross-pollination of ideas
and technologies. Here, we briefly ground the reader in the
history that has brought us to these questions. We then argue
that human-centered realizations of A3, a new intelligence to
join humans, must in fact be human-centered. We introduce the
reader to HF/E concepts that may underpin a desirable future,
one in which we have designed A3 to provide much benefice,
but, and first, do no harm.

Mechanical systems, like the Jacquard loom, Babbage’s
Difference Engine, Hollerith’s tabulators, and mechanical
computers for gun-laying, presented the first real instances
of automation, replacing human thought with “programmed”
deterministic devices. Human ingenuity was thus separated
temporally and physically from operation: a programmer
punched the cards or ground the cams at one time and place,
and later those determined the pattern woven into the cloth or
the elevation of the guns. This separation meant that decisions
had to be made ahead of time, but for these relatively mecha-
nistic processes the considerations were limited in scope. By
the 1970s and 1980s, electronic computerized devices were
widespread, replacing mechanical systems in vehicles, machine
tools, and even toys. However, these systems did similar work to
their earlier counterparts. For example, electronic fuel injection
is more flexible and offers superior performance compared with
a carburetor, but fills the same function. While the systems
available to the public were for the most part analogous to their
earlier counterparts, sophisticated semi-autonomous systems
were introduced into military, medical, aviation, and industrial
settings. These had both benefits and costs. For example, the
Aegis combat system improved air defense and fleet manage-
ment, but also was in part responsible for the tragic erroneous
shootdown of an Iranian civilian airliner, mistaken for a military
aircraft potentially vectoring to attack a US Navy ship (Kopec
& Tamang, 2007).

Increasing technical capabilities due to advances in computer
technology led automation to expand into the public sphere,
with highly complex or non-deterministic systems appearing
in home devices, such as thermostats, microwaves, and other
appliances. The idea that a microwave might be an acceptable
embodied agent would have been the premise for a joke only
years ago, but we are now surrounded by such highly agentic
systems (D. Miller, 2016). These can be enormously beneficial,
and quite frustrating, perhaps at the same time. These so-called
cyber-physical systems (CPS) can reduce energy use, help us
improve our health, conveniently deliver what we want, and
provide access to the contents of the world’s information stores.
They also change the nature of human agency, exert persuasive
power over us (Fogg, 2003), and can elicit enormous frustration
when they do not operate the way users expect or desire them
to (Pernice, 2015), or if there is a mismatch in goals (Verberne
et al., 2012).

Humans have extended their cognitive capacities through
external mechanisms since the advent of drawing and writing
thousands of years ago, and continue to do so with low-tech
devices like pen and paper, and increasingly agentic devices
such as computers and networks. The first edition of this vol-
ume, The Handbook of Human Factors and Ergonomics was
published in 1987. It seems so long ago, when computers were
not yet in nearly every pocket, and finding the references cited
meant a trip to a library to find another book or journal. Now
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the many papers cited are only seconds away, and intelligent
agents can recommend similar sources to go with the ones
referenced by the author. As this chapter is being written,
active work is being conducted on more efficient recommender
systems, augmented reality, wearable computing devices, and
brain–computer interfaces. These technologies further blur
or erase the line of where human cognition ends and where
the “outside” begins. The mind of an author is expanded by
access to sources and the ability to store information not in
memory, but on paper or in electronic media. When knowl-
edge is even less intermediated than it is now, perhaps by a
direct neural connection to the internet, what will that mean in
terms of defining humanity and A3? We have already turned
visionary dreams like Vannevar Bush’s conceptual Memex
(Shneiderman, 1998) and formerly science-fiction concepts like
Penny’s wrist-top computer from the cartoon Inspector Gadget
into readily available products. Will the visions of Masamune
Shirow’s brain–computer interfaces be that far off, and what
limits will there be on new technologies that further blur the
line between the natural and the technological?

Presently, there is more work than ever to be done. While
the history of human factors and ergonomics is closely tied
to automation, the connection between these disciplines and
machine learning-based technologies is more recent and tenu-
ous. A search of Google Scholar on ‘“machine learning” AND
“human factors” OR “ergonomics”’ yielded 1,830 returns in the
year 2000, 12,200 returns in 2008, and 68,000 returns in 2020.
This is a relatively low number as compared to 2020 results
of 2,950,000 for the term “machine learning” and 2,440,000
for “human factors” OR “ergonomics.” Related terms show
similar patterns, which reveal a relatively small but growing
intersection in the literature between the two fields. It has been
noted that educational intersections, meanwhile, are lagging,
both in terms of individuals educated in machine learning but
versed in HF/E principles, and the converse (Hannon et al.,
2019). Given the complex problems outlined in this chapter,
there are significant benefits to be realized in the change in
education, culture, and resource allocation that is and will be
necessary to continue, and indeed accelerate, the union of the
HF/E with machine learning communities.

4.1 Future Challenges in A3 Design

“First, do no harm” is a mandate humanity has given to its physi-
cians, but some of its physicians will now be not human, but
A3. There are many technical challenges in order for intelli-
gent automation to reach the level of maturity that is required
to ensure effective collaboration with humans (Abbass, 2019),
but arguably just as many design challenges. Klien et al. (2004)
identify ten such challenges for human–AI collaboration (see
Table 2), and these continue to be pressing issues in 2020. These
challenges encompass the topics of regard for human agency,
trust and trustworthiness, transparency, goal alignment, and bidi-
rectional communication and awareness of the partner’s state. In
many contexts, we need to consider how to work with A3 toward
the goal of doing “no harm.”

There are many technical challenges for intelligent automa-
tion to reach the level of maturity that is required to ensure
effective collaboration with humans (Abbass, 2019), but
arguably just as many design challenges. Klien et al. (2004)
identify ten such challenges for human-A3 collaboration, and
these continue to be pressing issues in 2020 (see Table 2). These
challenges encompass the topics of regard for human agency,
trust and trustworthiness, transparency, goal alignment, and bidi-
rectional communication and awareness of the partner’s state.

Parasuraman et al. (2000) identify four stages of information
processing and action as relevant to automation: informa-
tion acquisition, information analysis, decision selection, and

Table 2 Ten Challenges for Intelligent Agents and
Human-Agent Teams

Challenge 1: To be a team player, an intelligent agent must
fulfil the requirements of a Basic Compact (a commitment
of goal alignment) to engage in common-grounding
activities.

Challenge 2: To be an effective team player, intelligent
agents must be able to adequately model the other
participants’ intentions and actions vis-à-vis the joint
activity’s state and evolution - for example, are they
having trouble? Are they on a standard path proceeding
smoothly? What impasses have arisen? How have others
adapted to disruptions to the plan?

Challenge 3: Human-agent team members must be mutually
predictable.

Challenge 4: Agents must be directable.

Challenge 5: Agents must be able to make pertinent aspects
of their status and intentions obvious to their teammates.

Challenge 6: Agents must be able to observe and interpret
pertinent signals of status and intentions.

Challenge 7: Agents must be able to engage in goal
negotiation.

Challenge 8: Support technologies for planning and
autonomy must enable a collaborative approach.

Challenge 9: Agents must be able to participate in managing
attention.

Challenge 10: All team members must help control the costs
of coordinated activity.

Source: Adapted from Klien et al., 2004.

action implementation. Abbass (2019) identifies a set of risks
stemming from the interaction of human control and agent con-
trol, broken down by Parasuraman et al.’s stages (see Table 3).
The nature of these risks vary both as a function of overall
division of authority, and the stages of the decision–action
sequence as assigned to a human or technological agent.

These risks are in part compounded and in part mitigated by
the inherent sociality of agents, even ones that do not appear
to be humanlike. The truly social nature of the relationship
between humans and A3, described by Reeves and Nass (1996)
as “interactive media” follows similar patterns to the relation-
ships between humans. We unconsciously treat computers as if
they are humanlike entities (Nass &Moon, 2000), treating them
with politeness, trusting them in the same ways (Atkinson et al.,
2012), and being persuaded by them (Fogg, 2003; Fogg & Nass,
1997). This should be kept in mind in terms of understanding
how people relate to systems, for example, developing fanciful
mental models of or constructing personalities for machines
(Barley, 1988), or treating robots as irreplaceable and awarding
“fallen” robotic comrades who have no true agency military
medals (Garber, 2013). As humanlike agents, automata should
be considered in a psychological frame, as well as an engineer-
ing one, especially ones that exhibit more social features, such
as speech, faces, and intentionally, and unintentionally, social
behaviors.

4.2 A3 and Machine Ethics

Bryson and Winfield (2017) defined intelligence as the capacity
to do the right thing at the right time. Coincidentally, Stanislav
Petrov, the Soviet military officer who wisely overruled a faulty
automated system, described himself as “just in the right place,
at the right time” in his acceptance speech for the World Citizen
Award in 2006 (Anthony, 2013). For the foreseeable future,



HUMAN FACTORS AND ERGONOMICS IN DESIGN OF A3 1405

Table 3 Cooperative Human-Machine Control Introduces Risks that Are a Function of the Locus of Sense-Making,
Decision-Making, Execution Ability, and Execution Authority

Human
control

Sense-
making

Decision-
making

Execution
ability

Execution
authority Nature of risk

Absolute H H H H Limited human cognition and bounded rationality could lead to
high errors, information overload, and inability to manage
complex tasks.

High A3 H H H Undesirably biased analytics could drive the human to unfair
decisions, while human bias and limited cognition could add
more complexity to the mix.

High H A3 H H Undesirably biased recommendations could make the human
accountable for unethical or legally uncompliant decisions,
although the human could be overwhelmed by the available data,
and their own bias and limited cognition could add more
complexity to the mix.

Medium A3 A3 H H In the absence of transparency and explainability of the A3, the
human does not have enough information to form a judgement
regarding the chosen decision. Information and situation
complexity could overload the human. The human could become
accountable for inappropriate decisions.

Low A3 A3 A3 H In the absence of transparency and explainability of the AI, the
human has no understanding of the rationale of the decision.
Information and situation complexity could overload the human.
The human’s accountability is blinded.

Low A3 A3 H A3 The AI controls human actions and could lead the human to wrong
actions.

None A3 A3 A3 A3 The human is out of the loop, legal responsibilities and
accountabilities regarding the decision are both unclear.

Source: Adapted from Abbass, 2019.

human-A3 teams will be needed in critical roles, to ensure
optimal performance and safety, with both agents acting to
prevent error on the part of the other.

Winfield et al. (2019) note that that in the near future,
autonomous systems will need to make decisions that have
ethical consequences. Machine ethics can be classified into in
four major categories (1) Ethical Impact Agents: any machine
that can be evaluated for its ethical consequences, (2) Implicit
Ethical Agents: Machines that are designed to avoid unethical
outcomes, (3) Explicit Ethical Agents: Machines that can reason
about ethics, (4) Full Ethical Agents: Machines that can make
explicit moral judgments and justify them. The relevant societal
and regulatory implications of machine ethics, including the
question of ethical governance, have also been discussed by
many, both from the philosophical and psychological stand-
point, and from the standpoint of the technologies in play.
The field of ethical AI, ethical robots, and machine ethics,
focuses on the question of how A3 can behave ethically from
both philosophical and engineering standpoints (Chatila &
Havens, 2019). These fundamental questions are (1) “should
society delegate moral responsibility to its machines?,” and (2)
“how to build an ethical machine?” Winfield et al. (2019) also
discussed how to test artificial agents, advancing the concept
of an “Ethical Turing Test” which would compare the choices
of an artificial moral agent with those of humans. This presents
its own quandary, specifically, should artificial moral agents
(Floridi & Sanders, 2004) be designed to be similar to humans,
or should they espouse different morals?

Nebeker et al. (2019) argue that it is essential to determine
who is responsible for advancing the ethical practices of A3 tech-
nology and development that addresses the gaps and provides
recommendations in the area of ethical principles of A3 applica-
tions. These are considered under the overarching ethical princi-
ples of (1) respect for persons, that people are given appropriate

autonomy to make choices; (2) beneficence, defined as benefits
outweighing potential risks and harms; and (3) justice, that inap-
propriate burdens are not placed on individuals (see Figure 14).
The sub-concepts stemming from these include privacy, access
and usability, appropriate data management, and considerations
of relative risks and benefits.

Dignum (2018) distinguished three primary levels of A3

ethics, including (1) Ethics by Design, i.e., considering differ-
ent elements of human factors in human–A3 interactions; (2)
Ethics in Design, i.e., implementing different regulatory and
engineering methods to support the ethical implications of A3;
and (3) Ethics for Design, which encompasses codes of conduct
and standards for ethical practice. Yu et al. (2018) propose a
taxonomy for A3 governance with four areas of consideration:
(1) exploring ethical dilemmas; (2) individual ethical decision
frameworks; (3) collective ethical decision frameworks; and
(4) ethics in human–A3 interactions. Jobin et al. (2019) fur-
ther identify a need for a global agreement on principles and
guidelines for ethical A3, including six fundamental ethical
principles of (1) transparency; (2) justice; (3) fairness; (4)
non-maleficence; (5) responsibility; and (6) respect for privacy.
They also point out the importance of integrating guidelines
and development efforts in A3 with substantive ethical analysis
and adequate implementation strategies.

Recently, IEEE’s Initiative for Ethical Considerations in
Artificial Intelligence and Autonomous Systems released a
discussion document called Ethically Aligned Design (How,
2018). The presented report includes general principles of how
to embed values into autonomous intelligent systems. This
includes methods to guide ethical design, safety, and benef-
icence of Artificial General Intelligence (AGI) and artificial
superintelligence, personal data and individual access control,
and discusses how to reframe autonomous weapons sys-
tems, economics and humanitarian issues, and law (Chatila &
Havens, 2019).
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Access & Usability
Data Management

Privacy
Ethical Principles

Risks & Benefits

1. Is accurate to diverse populations
1. Data collection and storage protocols

    are appropriate

2. Who can access data is described

2. Risks are disclosed

3. Potential benefits outweigh risks

1. Evidence exists to support product

    validity and reliability

3. Data are secured using best practices

1. Personal data collected is conveyed
Respect for persons

Beneficence

Justice
3. Data-sharing policies are disclosed

2. Terms and Conditions and Privacy

    Policies are reviewed

2. Can be tailored for end user
3. Short- or long-term use is feasible

Figure 14 Ethical issues associated with A3 include respect for privacy, access to and usability of systems, appropriate security and
access control, and a balance of risks and benefits. These fall under the overarching principles of respect for persons, beneficence, and
justice. (Source: Adapted from Nebeker et al., 2019.)

The Association for Computing Machines has developed
a code of ethics and professional conduct (ACM Code 2018
Task Force, 2018), as has the Human Factors and Ergonomics
Society (Human Factors and Ergonomics Society, 2020). Four
IEEE working standards groups (Shahriari & Shahriari, 2017)
are developing candidate standards to address related ethical
concerns, including the following: P7000—Model Process
for Addressing Ethical Concerns During System Design;
P7001—Transparency of Autonomous Systems; P7002—Data
Privacy Process; and P7003—Algorithmic Bias Considerations.
These can serve as a starting point for considering professional
obligations regarding work in human factors or computer
engineering, and both stress the obligation to the public good.
To that end, it is incumbent upon engineers, designers, and
academics to avoid work that crosses ethical boundaries and
unduly increases the risks of harm, for example, by offering an
opportunity for discrimination or introduction of bias, especially
that which causes further disadvantage to the most vulnerable.

Following legal and professional guidelines and endeavoring
to avoid doing harm is a fair first level of concern for design,
but there is a further onus to actively do good. This is not nec-
essarily straightforward, and there are substantial differences in
moral and ethical alignments, due to personal factors (Graham
et al., 2013), cultural factors (Awad et al., 2020; Huang et al.,
2016), and contextual forces. It is impossible to provide a pre-
scriptive statement other than that it is imperative for designers
and engineers to consider the moral and ethical consequences
of their choices that become embedded in systems. Without
deliberate attention to algorithmic bias (Kirkpatrick, 2016),
systems can easily reproduce extant patterns of favor and
disfavor, as has been noted in study of recommender systems
determining criminal recidivism risk (Khademi & Honavar,
2019). To quote Angela Y. Davis, “In a racist society, it is not
enough to be non-racist, we must be anti-racist.” Ruha Ben-
jamin (2019) calls out “Jim Code” - a continuing devaluation of
Blackness and the result of avoiding addressing issues of race
in the design of A3 systems, resulting in continuing structural
racism. A3 systems that purport to increase efficiency may
instead increase inequality, unless design and policy decisions
are made to ensure that these adverse effects do not result
(Eubanks, 2017). It is therefore the responsibility of educators,
researchers, designers of technologies, and practitioners to
take up the call to push back against an unjust status quo. To
ignore these social dimensions of HF/E work is to fail to make
the future a better place, especially for those who are most
disadvantaged.

A3 systems almost inevitably embed our heuristics and
biases. Machine learning systems encode the parameters of
the training set, which may reflect societal biases such as the
overrepresentation of Black Americans ensnared in the judicial
system (Angwin, Larson, Mattu, & Kirchner, 2016), or under-
representation of minorities in medical research (Gianfrancesco,
Tamang, Yazdany, & Schmajuk, 2018). Algorithms need to be
audited to determine if there are latent biases in the system,
even if biases are not explicitly coded into them (Diakopoulos,
2016). Considering the risks of incarceration, medical error,
deepening wealth inequality, or other adverse outcomes, care
must be taken with algorithmic systems to discover potential
harms (Peña Gangadharan, Eubanks, & Barocas, 2014) and
deliberately de-bias algorithmic systems to prevent such even-
tualities. Virginia Eubanks, in Automating Inequality (2017),
describes how technology is often used to surveil and police the
disadvantaged. While this is a policy choice, A3 makes it easier
to track behavior and detect any deviation from the system’s
rules, and thus deny benefits as a result. Eubanks cites multiple
examples of how burdens are disproportionately placed on the
most vulnerable, as a result of automation failure (for example,
in records processing), and through the actualization of policy
decisions. For a designer or engineer, the charge is then not
solely to deliver technical excellence, reducing failure of sys-
tems that could result in social harms, but also to consider the
implications of building systems that can cause disproportionate
social harm, not only in cases of failure, but that cause harm by
design.

Biases in A3, as it currently exists, are not rare (Nissenbaum,
1996), but there are design strategies to play fair. Zimmerman
and Di Rosa (2019) identify two types of fairness relevant to
algorithmic bias: procedural fairness, where impartial rules and
the same kind of data are equally applied to all; and substantive
fairness where the outcomes and their societal impacts are
considered with respect to justice. There are places for both
of these: fairness in processing should avoid situations such
as poorly trained image processing algorithms misclassifying
Black humans as gorillas (Vincent, 2018), or which overstate
the risk posed by a potential parolee, dependent upon racially
and socially linked factors that do not reflect their actual level
of recidivism risk (Angwin et al., 2016). Ensuring substantive
fairness is more difficult, and politically more sensitive. A3

can magnify the existing biases in contemporary society, or
can be used to reduce them, but this requires deliberate action
on the part of designers. A3 should, where possible, provide
parity for the disadvantaged, and address the needs of those
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who are marginalized. Value-sensitive design (Friedman, 1996)
can determine the needs of stakeholders, and tools such as A3

auditing (Raji et al., 2020) can begin movement toward a more
fair and equitable use of A3 to champion pro-social goals, avoid
hazards, or simply not anger end users.

4.3 Moral and Ethical Values in Tension

To whom does a technological agent owe a moral duty? Is a user
or owner owed special consideration, or is an agent’s duty to
the general good? Should an A3 toy owe a duty to a child, and
keep a secret if asked to, or should it report child abuse if con-
fided in, or tell others of dangerous behavior (Jones & Meurer,
2016)? Should one’s vehicle protect the occupants over all oth-
ers? Daimler released a statement to the press stating just that,
but quickly walked it back (Taylor, 2016). These questions that
seem academic at the moment soon will not be so: systems need
to be programmed to act (or reject action) for situations that will
occur to someone, somewhere, at a future time and place.

A significant amount of philosophical debate, as applied to
automated vehicles, has been conducted (Bonnefon, Shariff, &
Rahwan, 2015; Lin, 2017), as well as survey research (Awad
et al., 2018, 2020; Bonnefon, Shariff,& Rahwa,n 2016; Li
et al., 2016; Malle et al., 2015) and research in virtual reality
(Navarrete et al., 2012; Sütfeld, Gast, König, & Pipa, 2017;
Wintersberger et al., 2017). This knowledge can inform design
of vehicle systems as well as shape the development of other
agents ranging from shopping agents to military systems. In
addition to determining what to program systems to do in
situations of moral dilemma, a second question is, how much
human autonomy to allow in such situations? In some contexts,
where time and cognitive resources are available, human input
can be considered and put to use in shaping outcomes. Under
time pressure and uncertainty (Maule et al., 2000; Svenson &
Maule, 1993), human cognition and action can be compromised,
and thus it may be necessary to curtail human autonomy in
such contexts, especially if the risks of injury or damage are
significant. This presents a philosophical dilemma, a question
of how values of autonomy and rationality are to be valued,
especially when designing a system that can take agency away
from a human, potentially to seek their considered goals, or
to execute predetermined actions when human action is not
possible or unwise in the moment.

An example of how technology is used to resolve these
conflicts are the many self-binding technologies: they allow
the rational self to force the situated self to follow a predeter-
mined course of action (Fogg, 2003; Thaler & Sunstein, 2009).
A time-lock box can help one focus by locking away a phone
or snack, which is then inaccessible until the timer runs out.
A more critical example is the design of lane keeping systems
with mechanisms to avoid overcorrection and potential loss of
control (Boink et al., 2014).

4.4 Bad Actors and Dark Patterns

It is worth considering that transparency is not always the goal
of A3, and that some automation exists to assist users toward
actions or processes they do not want to engage in, and which
may indeed harm them. Effective user interface design guides
user behavior, and this can occur with or without the user’s
conscious awareness. Ideally, A3 design can indeed guide the
user along a course of action that is beneficial to them, under
their own direction or in pursuit of their overarching goals. In
contrast, user interface design techniques that guide users along
courses of action that are not in their best interest are collectively
referred to as Dark Patterns (Brignull, 2020). Waltzman (2017)
provides several categories of dark patterns: these comprise (1)
Nagging: Redirection of expected functionality that persists

beyond a few interactions; (2) Obstruction: Making a process
more difficult than it needs to be with the intention of dissuading
certain actions; (3) Sneaking: Attempting to disguise informa-
tion that is relevant to the user; (4) Interface Interference:
Manipulation of the interface that privileges certain actions
over others; and (5) Forced Action: Requiring users to perform
certain actions in order to maintain access to a service. Each
has implications for trust, but each use by designers to infringe
upon user trust also has implications for the culture and lineage
of design to come. Our path toward the A3 of the future will be
paved with the design decisions of the present.

Lacey and Caudwell (2019) describe three additional charac-
teristics of dark patterns: (1) dark patterns produce the illusion
of user sovereignty; (2) they emphasize short-term gains over
long-term benefits; and (3) theymanipulate, manage, and exploit
emotion in order to generate “data myopia” (Stark, 2016) in the
user.Most studies to date have focused on dark design patterns in
online environments, but at least one group of researchers have
examined these patterns as applied to cyber-physical systems in
the form of home robots (Caudwell & Lacey, 2020). Home assis-
tant robots have access to the most private aspects of our domes-
tic lives, and many collect and transmit significant amounts of
data to their servers. From a design standpoint, potential security
concerns for end users can, be answered through frameworks
intended to address cyber-attacks, for example, the Three Pil-
lars of Information Security. These include (1) confidentiality:
preventing unauthorized disclosure of information; (2) integrity:
preventing unauthorized modification of information; and (3)
availability: maintaining access to information (Merkow & Bre-
ithaupt, 2014; Smith, 1989). Taken together, the pillars provide
a useful framework when considering security concerns in gen-
eral, and if a system design violates any of these pillars, design-
ers are advised to consider them carefully and signal this to end
users appropriately.

A3 design can be incredibly difficult to design in terms of
walking the fine line between responsive behavior toward users,
and violations of their trust and rights. It is very important
to avoid knee-jerk labeling of such violations as malicious,
as the very nature of autonomy means that such actions may
be unintended, or inadvertent. We, here, call out that fine line
between necessity and malfeasance, and also acknowledge
that it can be quite subtle when building A3 technologies. It
is certainly a design consideration, and one that touches upon
practically every previous section of this chapter, among many
areas of concern. Intentional dark patterns and unintentional
behavior that look similar, can both have the same outcomes:
violations of user rights, expectations, or trust. Of course, true
dark patterns must be designed, and so a related concern is how
designers decide to engage their talents. Unlike physicians,
our constellation of professions has no ethical consensus to
do no harm. It is worth considering at the outset of system
architecture whether transparency will be the goal of your A3,
and how justice and beneficence will be integrated into the
design process.

4.5 You Are What You Engineer

Perhaps the most definable exceptional human capacity is
our ability to incorporate our tools into ourselves. This is not
merely a philosophical statement, as modern neuroscience has
shown clearly that, as they are learned, tools such as chisels and
violinists’ bows acquire brain regions that are deeply analogous
to biological components, such as arms or fingers (Nicolelis,
2011; Ramachandran, 1998, 2012). For an organism so com-
mitted to incorporation of outside components, it is perhaps
unexceptional that humans have long endeavored to literally
integrate our tools. In a more contemporary sense, we have
come incredibly far over the last decade, and is it indeed now
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possible to refer to the “early neuro-hacking days.” Linking
cochlear implants directly to a digital cassette output (Gfeller
& Lansing, 1991), or Wes Warwick connecting his human
arm to a robotic one over the early Internet (Warwick, 2016)
seem almost quaint. They have now been joined by recent,
but assuredly soon-to-seem antiquated, efforts by technology
companies to directly connect human brains to smart devices.
Industry groups like Facebook and Open Water are working to
advance noninvasive technologies able to read from, and write
to the human nervous system and brain, leveraging near infrared
and holographic techniques for monitoring neural blood flow
patterns in real time (Openwater, 2020). Simultaneously, Neu-
ralink, Kernel, and others are working on invasive strategies
to measure and influence the electrical activity of the brain
with implanted electrodes, those being connected to computing
devices allowing “read and write” capabilities.

Many lines are blurred as the human nervous system is
being increasingly linked to technological systems, and while
it is unquestionable that these technologies hold great promise
to augment human capabilities, there will simultaneously be
many perils. Augmenting humans through such technology,
both cognitively and physiologically, is unquestionably a task
best suited to A3. A3 possess the required flexibility, and could
meet neuroplasticity “halfway” while integrating with the most
complex computational device humans possess: the brain and
peripheral nervous system. It was one week before this writing
that Neuralink demonstrated pigs with Neuralink brain implants,
and they made the claim of intending to start human trials within
the year. The stated goal of this company is to provide an avenue
through which to integrate human cognition with that of A3.
In this, however, there are some additional considerations that
designers, and indeed everyone else, should consider.

We may well be witnessing a prelude to the end of the era in
which human thought is generally accepted to be an entirely pri-
vate activity. This thought may be odd to many readers, but the
authors have great confidence it will be less so to our children.
Indeed, readers born after 1975 or so will have grappled with
their parents’ discomfort with the “death of privacy” ushered in
by the modern internet, and as in that case the outcomes do not
have to be negative. The horizon for determining this is not far
off. Significant progress has been made in recent years in the
development of both invasive and non-invasive brain–machine
interfaces (BMIs), allowing operators to communicate directly
with machinery (computers, robotics, cars, artificial limbs, etc.)
using only their thoughts (Roelfsema, Denys, & Klink, 2018). A
Google patent search reveals that over 400 patents were filed for
brain-connected devices in 2019 (Google, 2020). The success of
either of these technologies, practical external neuroimaging or
computer-connected “permanent” electroencephalography, will
open a new universe of possibilities for the realm of neurose-
curity. This intimate connection between a user’s neural sys-
tem and technological space opens an entirely new dimension
of attack surfaces that may potentially be exploited by cyber
threat actors, or by actors one would hope to be more benev-
olent. As in the internet parallel above, conflicts of interest are
certain to abound. Should Neuralink succeed in producing tech-
nologies that aid in decision-making, how should a Neuralink
implant assist a user regarding a decision about upgrading to the
new model?

Existing frameworks are appropriate for considering the
coming questions of neurosecurity (Canham & Sawyer, 2019).
Within the context of neurosecurity, breaching the pillar of
confidentiality would potentially allow unprecedented access
to an individual’s most private data: their unfiltered thoughts.
A breach of integrity would mean that an attacker could inject
commands into a neuro-device, or alternatively send false
signals to the brain directly through the device. A failure of
availability would prevent a user from being able to control the

device or receive data from it. While these failures may seem
like pure science fiction, proof of concept attacks have already
been demonstrated for each pillar (Roelfsema et al., 2018).
These attack surfaces apply equally to both the connected
devices themselves, but also to the human nervous system.
An attacker with access to a connected device may utilize this
access to passively monitor activity and gather information,
but might also use this access to manipulate the behavior of
the connected human. Consider the case of cochlear implants
which augment human hearing capability. These hearing aug-
mentation devices might be compromised and used as mobile
audio surveillance devices, creating “human bugs;” however,
these compromised devices are also capable of producing
painful stimuli. Leveraging this capability, a threat actor could
expose a subject to positive or negative stimulation in response
to specific actions and thereby manipulate behavior. Imagine
coupling painful stimulation with geo-fencing to keep a user
confined within a specified boundary, in a way that could not be
avoided or stopped. Considering the significant risks of direct
neural interface augmentation, security should not be left as an
afterthought but rather, integrated into the design from earliest
possible phase. That earliest possible time is right now.

5 ENGINEERING A3 EVERYONE LOVES

Automation, autonomy, and artificial intelligence (A3) tech-
nologies serve as extensions to human ability and may soon
rewrite the way that humans work, live, and even think. The
authors are hopeful that humanity will like, and even love, what
is built (Egwatu, Sawyer, & Hancock, 2019; Hancock, 2014;
Hancock, Pepe, & Murphy, 2005; Nyholm & Frank, 2017;
Nyholm & Smids, 2020). It is likely that the present generation
of computational tools, algorithms that can learn from data, are
not the end point for tools which enable technologies that act
in reasonable, and even humanlike ways. As ubiquitous as it
seems now, machine learning may soon be a curious historical
footnote. What will remain is the art and science of design-
ing intelligent teammates, which is not only the focus of this
chapter, but also perhaps the most consequential intellectual
endeavor of our moment in human history. The desire for
synthetic intelligent creations has been a staple of human desire
for so long, it is indeed exciting to be alive at the moment when
these ambitions are coming to fruition. While artificial general
intelligence (AGI) remains, at present, just a dream, a number
of promising, and promised, advances give at least some possi-
bility that younger readers of this chapter will live to meet them.
Of course, when Simon predicted machines “capable … of
doing any work a man can do” (Chase & Simon, 1973), he had
similar sentiments, and today we may be no different. We do
not need to live to meet this technology in order to help decide
what it will be: the design decisions we make will inform the
philosophies and technologies that are its building blocks. In
developing present-day, highly useful A3 technologies, knowl-
edge from human factors and ergonomics (HF/E) is of great
use, especially to designers with the difficult task of dovetailing
humans and machines in complex systems. Technology serves
as a greater extension of human ability each year, and optimal
performance still comes from hybrid teams, something that will
arguably be true even after we meet, or become one with, AGI.
We must work in the present to design machines capable of
accompanying us into the sometimes chaotic environments to
come, and helping us to enjoy that journey.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Katherine Rahill for assis-
tance with the initial literature review, Sarah Minion, for assis-
tance with figures, Esat Boucaud for assistance with citations



HUMAN FACTORS AND ERGONOMICS IN DESIGN OF A3 1409

and citation management, Adam Beal and Lexi Neame for influ-
ential conversations, and Marian W. Sawyer for assistance with
proofreading.

REFERENCES

Abbass, H. A. (2019). Social integration of artificial intelligence: Func-
tions, automation allocation logic and human-autonomy trust.
Cognitive Computation, 11(2), 159–171. https://doi.org/10.1007/
s12559-018-9619-0

ACM Code 2018 Task Force. (2018, June 22). ACM code of ethics
and professional conduct. Association for Computing Machinery.
https://www.acm.org/code-of-ethics

Agrawal, A., Gans, J. S., & Goldfarb, A. (2019). Exploring the impact
of artificial intelligence: Prediction versus judgment. Informa-
tion Economics and Policy, 47, 1–6. https://doi.org/10.1016/j
.infoecopol.2019.05.001

Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016, May
23). Machine bias. ProPublica. https://www.propublica.org/
article/machine-bias-risk-assessments-in-criminal-sentencing?
token=e_IIJeE3oY9zIykeZdUxxAunfmrN8x1-

Anthony, P. (2013, April 27). The Man Who Saved the World. Statement
Film. http://themanwhosavedtheworldmovie.com/

Aronson, E., Wilson, T. D., & Brewer, M. B. (1998). Experimentation
in social psychology. In D. T. Gilbert, S. T. Fiske, & G.Lindzey
(Eds.), The handbook of social psychology (Vols. 1–2, 4th ed., pp.
99–142). New York: McGraw-Hill.

Atkinson, D., Hancock, P., Hoffman, R. R., Lee, J. D., Rovira, E., Stokes,
C., & Wagner, A. R. (2012). Trust in computers and robots: The
uses and boundaries of the analogy to interpersonal trust. Pro-
ceedings of the Human Factors and Ergonomics Society Annual
Meeting, 56(1), 303–307. https://doi.org/10/gfkwbb

Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A.,
Bonnefon, J.-F., & Rahwan, I. (2018). The moral machine experi-
ment. Nature, 563(7729), 59–64. https://doi.org/10.1038/s41586-
018-0637-6

Awad, E., Dsouza, S., Shariff, A., Rahwan, I., & Bonnefon, J.-F. (2020).
Universals and variations in moral decisions made in 42 countries
by 70,000 participants. Proceedings of the National Academy of
Sciences. https://doi.org/10.1073/pnas.1911517117

Bainbridge, L. (1983). Ironies of automation. In Analysis, design and
evaluation of man-machine systems (pp. 129–135). Amsterdam:
Elsevier.

Baker, P. C. (2019, November 27). ‘I think this guy is, like, passed out in
his Tesla.’ The New York Times. https://www.nytimes.com/2019/
11/27/magazine/tesla-autopilot-sleeping.html

Barley, S. R. (1988). The social construction of a machine: Ritual, super-
stition, magical thinking and other pragmatic responses to running
a CT scanner. In M. Lock & D. Gordon (Eds.), Biomedicine exam-
ined (pp. 497–539). Dordrecht: Springer Netherlands. https://doi
.org/10.1007/978-94-009-2725-4_19

Behymer, K. J., & Flach, J. M. (2016). From autonomous systems to
sociotechnical systems: Designing effective collaborations. She Ji:
The Journal of Design, Economics, and Innovation, 2(2), 105–114.

Benjamin, R. (2019). Race after technology: Abolitionist tools for the
new Jim code. Cambridge: Polity.

Ben Zur, H., & Breznitz, S. J. (1981). The effect of time pressure
on risky choice behavior. Acta Psychologica, 47(2), 89–104.
https://doi.org/10/d3bxbg

Bergasa, L. M., Nuevo, J., Sotelo, M. A., Barea, R., & Lopez, M. E.
(2006). Real-time system for monitoring driver vigilance. IEEE
Transactions on Intelligent Transportation Systems, 7(1), 63–77.
https://doi.org/10/ft9jpk

Blascovich, J., Loomis, J., Beall, A. C., Swinth, K. R., Hoyt, C.
L., & Bailenson, J. N. (2002). Immersive virtual environment
technology as a methodological tool for social psychology.

Psychological Inquiry, 13(2), 103–124. https://doi.org/10.1207/
S15327965PLI1302_01

Boink, R., van Paassen, M. M., Mulder, M., & Abbink, D. A. (2014).
Understanding and reducing conflicts between driver and hap-
tic shared control. In 2014 IEEE International Conference On
Systems, Man and Cybernetics (SMC) (pp. 1510–1515). http://
ieeexplore.ieee.org/abstract/document/6974130/

Bolton, C., Machová, V., Kovacova, M., & Valaskova, K. (2018). The
power of human–machine collaboration: Artificial intelligence,
business automation, and the smart economy. Economics, Man-
agement, and Financial Markets, 13(4), 51–56.

Bonnefon, J.-F., Shariff, A., & Rahwan, I. (2015). Autonomous vehi-
cles need experimental ethics: Are we ready for utilitarian cars?
ArXiv:1510.03346 [Cs]. http://arxiv.org/abs/1510.03346

Bonnefon, J.-F., Shariff, A., & Rahwan, I. (2016). The social
dilemma of autonomous vehicles. Science, 352(6293), 1573–1576.
https://doi.org/10/f8rqvz

Boy, G. A. (1998). Cognitive function analysis for human-centered
automation of safety-critical systems. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems -
CHI ’98 (pp. 265–272). https://doi.org/10.1145/274644.274682

Bradshaw, J. M., Hoffman, R. R., Johnson, M., & Woods, D. D. (2013).
The seven deadly myths of “autonomous systems”. IEEE Intelli-
gent Systems, 28(3), 54–61.

Brignull, H. (2020). Dark patterns. https://darkpatterns.org/

Broadbent, D. E. (1958). Effect of noise on an “intellectual” task. The
Journal of the Acoustical Society of America, 30(9), 824–827.

Bruckner, L. A. (1978). On Chernoff faces. In Graphical representation
of multivariate data (pp. 93–121). Amsterdam: Elsevier.

Bryson, J., & Winfield, A. (2017). Standardizing ethical design for
artificial intelligence and autonomous systems. Computer, 50(5),
116–119.

Burns, A. J., Roberts, T. L., Posey, C., Bennett, R. J., & Courtney, J. F.
(2018). Intentions to comply versus intentions to protect: A VIE
theory approach to understanding the influence of insiders’ aware-
ness of organizational SETA efforts. Decision Sciences, 49(6),
1187–1228. https://doi.org/10.1111/deci.12304

Cades, D. M., Crump, C., Lester, B. D., & Young, D. (2017). Driver
distraction and advanced vehicle assistive systems (ADAS): Inves-
tigating effects on driver behavior. In N. Stanton (Ed.), Advances
in human aspects of transportation (pp. 1015–1022). Berlin:
Springer.

Caffier, P. P., Erdmann, U., & Ullsperger, P. (2003). Experimental evalu-
ation of eye-blink parameters as a drowsiness measure. European
Journal of Applied Physiology, 89(3–4), 319–325. https://doi.org/
10.1007/s00421-003-0807-5

Caldwell, B. S., Megan, N.-Y., & Jordan, R. (2019). Advances in
human-automation collaboration, coordination and dynamic func-
tion allocation. Advances in Transdisciplinary Engineering, 10,
348.

Campbell, D. T. (1957). Factors relevant to the validity of experiments
in social settings. Psychological Bulletin, 54(4), 297–312. https://
doi.org/10.1037/h0040950

Canham, M., Posey, C., & Bockelman, P. S. (2020). Confronting infor-
mation security’s elephant: The unintentional insider threat. In
D. D. Schmorrow & C. M. Fidopiastis (Eds.), Augmented cog-
nition. Human cognition and behavior (pp. 316–334). Cham:
Springer International Publishing. https://doi.org/10.1007/978-3-
030-50439-7_22

Canham, M., & Sawyer, B. D. (2019). Neurosecurity: Human brain
electro-optical-signals as MASINT. American Intelligence Jour-
nal, 36(2), 41–47.

Canonico, L. B., Flathmann, C., & McNeese, N. (2019). Collectively
intelligent teams: Integrating team cognition, collective intelli-
gence, and AI for future teaming. Proceedings of the Human Fac-
tors and Ergonomics Society Annual Meeting, 63(1), 1466–1470.

Carella, A., Kotsoev, M., & Truta, T. M. (2017). Impact of secu-
rity awareness training on phishing click-through rates. 2017



1410 SELECTED APPLICATIONS

IEEE International Conference on Big Data (Big Data) (pp.
4458–4466). https://doi.org/10.1109/BigData.2017.8258485

Caudwell, C., & Lacey, C. (2020). What do home robots want?
The ambivalent power of cuteness in robotic relation-
ships. Convergence, 26(4), 956–968. https://doi.org/10.1177/
1354856519837792

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive
Psychology, 4(1), 55–81. https://doi.org/10/c226rf

Chatila, R., & Havens, J. C. (2019). The IEEE Global Initiative on
Ethics of Autonomous and Intelligent Systems. In M. I. Aldinhas
Ferreira, J. Silva Sequeira, G. Singh Virk, M. O. Tokhi, &
E. E. Kadar (Eds.), Robotics and well-being (pp. 11–16). Cham:
Springer International Publishing. https://doi.org/10.1007/978-3-
030-12524-0_2

Chen, J. Y., Procci, K., Boyce, M., Wright, J., Garcia, A., & Barnes,
M. (2014). Situation awareness-based agent transparency. Army
research lab: Aberdeen proving ground md human research and
engineering.

Chen, Y., Ramamurthy, K. (Ram), & Wen, K.-W. (2015). Impacts
of comprehensive information security programs on information
security culture. Journal of Computer Information Systems, 55(3),
11–19. https://doi.org/10.1080/08874417.2015.11645767

Chollet, M., Ochs, M., & Pelachaud, C. (2017). A methodology for
the automatic extraction and generation of non-verbal signals
sequences conveying interpersonal attitudes. IEEE Transactions
on Affective Computing.

Chung, S. (2019). Email usage: Working age knowledge work-
ers. 2019 Adobe Email Study. https://www.slideshare.net/adobe/
2019-adobe-email-usage-study

Clough, B. T. (2002). Metrics, schmetrics! How the heck do you deter-
mine a UAV’s autonomy anyway?Wright-Patterson AFB, OH: Air
Force Research Lab.

Coelingh, E., Eidehall, A., & Bengtsson, M. (2010). Collision warn-
ing with full auto brake and pedestrian detection—A practical
example of automatic emergency braking. 2010 13th International
IEEE Conference on Intelligent Transportation Systems (ITSC),
155–160. https://doi.org/10/bgfvv2

Coleman, F. (2019). A human algorithm: How artificial intelligence is
redefining who we are. Berkeley, CA: Counterpoint Press.

Cook, R. I., Woods, D. D., Mccolligan, E., & Howie, M. B. (1991, Jan-
uary 1). Cognitive consequences of clumsy automation on high
workload, high consequence human performance. Paper presented
at Fourth Annual Workshop on Space Operations Applications
and Research (SOAR 90), Lyndon B. Johnson Space Center, TX.
https://ntrs.nasa.gov/citations/19910011398

Cruz-Neira, C., Sandin, D. J., & DeFanti, T. A. (1993). Surround-screen
projection-based virtual reality: the design and implementation of
the CAVE. In Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques (pp. 135–142).

Cuevas, H. M., Fiore, S. M., Caldwell, B. S., & Strater, L. A. (2007).
Augmenting team cognition in human-automation teams perform-
ing in complex operational environments. Aviation, Space, and
Environmental Medicine, 78(5), B63–B70.

D’Arcy, J., & Hovav, A. (2008). Does one size fit all? Examining
the differential effects of is security countermeasures. Journal of
Business Ethics, 89(1), 59. https://doi.org/10.1007/s10551-008-
9909-7

Dash, R.,McMurtrey,M., Rebman, C., &Kar, U. K. (2019). Application
of artificial intelligence in automation of supply chain manage-
ment. Journal of Strategic Innovation and Sustainability, 14(3).

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and
user acceptance of information technology. MIS Quarterly, 13(3),
319–340. JSTOR. https://doi.org/10.2307/249008

De Melo, C. M., Carnevale, P., Read, S., Antos, D., & Gratch, J.
(2012). Bayesian model of the social effects of emotion in
decision-making in multiagent systems. Paper presented at Con-
ference on Autonomous Agents and Multi-agent Systems and
55–62.

Diakopoulos, N. (2016). Accountability in algorithmic decision mak-
ing. Communications of the ACM, 59(2), 56–62. https://doi.org/10
.1145/2844110

Difonzo, N., Hantula, D. A., & Bordia, P. (1998). Microworlds
for experimental research: Having your (control and collection)
cake, and realism too. Behavior Research Methods, Instruments,
& Computers, 30(2), 278–286. https://doi.org/10.3758/BF0320
0656

Dignum, V. (2018). Ethics in artificial intelligence: Introduction to
the special issue. Ethics and Information Technology, 20(1), 1–3.
https://doi.org/10.1007/s10676-018-9450-z

Dobbins, G. H., Lane, I. M., & Steiner, D. D. (1988). A note on the
role of laboratory methodologies in applied behavioural research:
Don’t throw out the baby with the bath water. Journal of Orga-
nizational Behavior, 9(3), 281–286. https://doi.org/10.1002/job
.4030090308

Draper, D. (1995). Assessment and propagation of model uncertainty.
Journal of the Royal Statistical Society: Series B (Methodologi-
cal), 57(1), 45–70.

Drew, T., Võ, M. L.-H., & Wolfe, J. M. (2013). The invisible gorilla
strikes again: Sustained inattentional blindness in expert observers.
Psychological Science, 24(9), 1848–1853. https://doi.org/10.1177/
0956797613479386

Egwatu, C., Sawyer, B. D., & Hancock, P. A. (2019). Perspectives: Digi-
tal influences on sexual discourse in disabled populations. Critical
Disability Discourses/Discours Critiques dans le Champ duHand-
icap, 9(0), Article 0. https://cdd.journals.yorku.ca/index.php/cdd/
article/view/39748

Eisma, Y. B., Hancock, P. A., & de Winter, J. C. (2020). On
Senders’s models of visual sampling behavior. Human Factors,
0018720820959956.

Endsley, M. R. (1987). The application of human factors to the develop-
ment of expert systems for advanced cockpits. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 31(12),
1388–1392.

Endsley, M. R. (1988). Situation awareness global assessment technique
(SAGAT). Aerospace and Electronics Conference, 1988. NAE-
CON 1988., Proceedings of the IEEE 1988 National (vol. 3, pp.
789–795). https://doi.org/10.1109/NAECON.1988.195097

Endsley, M. R. (1995). Toward a theory of situation aware-
ness in dynamic systems. Human Factors: The Journal of
the Human Factors and Ergonomics Society, 37(1), 32–64.
https://doi.org/10/ftd9tz

Endsley, M. R. (2016).Designing for situation awareness: An approach
to user-centered design. Boca Raton, FL: CRC Press.

Endsley, M. R., & Kiris, E. O. (1995). The out-of-the-loop performance
problem and level of control in automation. Human Factors: The
Journal of the Human Factors and Ergonomics Society, 37(2),
381–394. https://doi.org/10/bj6f3c

Eubanks, V. (2017). Automating inequality: How high-tech tools profile,
police, and punish the poor (1st ed.). NewYork: St. Martin’s Press.

Farmer, C. M. (2004). Effect of electronic stability control on auto-
mobile crash risk. Traffic Injury Prevention, 5(4), 317–325.
https://doi.org/10/b8bcph

Farmer, C. M. (2006). Effects of electronic stability control: An update.
Traffic Injury Prevention, 7(4), 319–324. https://doi.org/10/d836zp

Fereidunian, A., Lucas, C., Lesani, H., Lehtonen, M., & Nordman, M.
(2007). Challenges in implementation of human-automation inter-
actionmodels.Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 1–6.

Fitts, P. M., Viteles, M. S., Barr, N. L., Brimhall, D. R., Finch, G.,
Gardner, E., Grether, W. F., Kellum, W. E., & Stevens, S. S.
(1951). Human engineering for an effective air-navigation and
traffic-control system. DTIC Document.

Flemisch, F., Schieben, A., Kelsch, J., & Löper, C. (2008). Automa-
tion spectrum, inner/outer compatibility and other potentially use-
ful human factors concepts for assistance and automation. Human
Factors for Assistance and Automation.



HUMAN FACTORS AND ERGONOMICS IN DESIGN OF A3 1411

Floridi, L. (2020). AI and its newwinter: Frommyths to realities.Philos-
ophy & Technology, 33(1), 1–3. https://doi.org/10.1007/s13347-
020-00396-6

Floridi, L., & Sanders, J. W. (2004). On the morality of artificial agents.
Minds and Machines, 14(3), 349–379. https://doi.org/10.1023/B:
MIND.0000035461.63578.9d

Fogg, B. J. (2003). Persuasive technology: Using computers to
change what we think and do. Berkeley, CA: Morgan Kaufmann
Publishers.

Fogg, B. J., & Nass, C. (1997). Silicon sycophants: The effects of com-
puters that flatter. International Journal of Human-Computer Stud-
ies, 46(5), 551–561. https://doi.org/10/cz2mgc

Frazier, M. L., Johnson, P. D., & Fainshmidt, S. (2013). Develop-
ment and validation of a propensity to trust scale. Journal of
Trust Research, 3(2), 76–97. https://doi.org/10.1080/21515581
.2013.820026

Friedman, B. (1996). Value-sensitive design. Interactions, 3(6), 16–23.
https://doi.org/10/dntfwj

Friedman, B., Kahn, P., & Borning, A. (2002). Value sensitive design:
Theory and methods. University of Washington Technical Report,
02–12.

Friedman, B., Kahn, P. H., Borning, A., & Huldtgren, A. (2013). value
sensitive design and information systems. In N. Doorn, D. Schu-
urbiers, I. van de Poel, & M. E. Gorman (Eds.), Early engagement
and new technologies: Opening up the laboratory (pp. 55–95).
Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-
007-7844-3_4

Frischmann, B., & Selinger, E. (2018). Re-engineering humanity. Cam-
bridge: Cambridge University Press.

Fu, E., Sibi, S., Miller, D., Johns, M., Mok, B., Fischer, M., & Sirkin,
D. (2019). The car that cried wolf: Driver responses to missing,
perfectly performing, and oversensitive collision avoidance sys-
tems. 2019 IEEE Intelligent Vehicles Symposium (IV), 1830–1836.
https://doi.org/10.1109/IVS.2019.8814190

Garber, M. (2013, September 20). Funerals for fallen robots. The
Atlantic. https://www.theatlantic.com/technology/archive/2013/
09/funerals-for-fallen-robots/279861/

Gelderblom, H., & Menge, L. (2018). The invisible gorilla revisited:
Using eye tracking to investigate inattentional blindness in inter-
face design. In Proceedings of the 2018 International Conference
on Advanced Visual Interfaces (pp. 1–9). https://doi.org/10.1145/
3206505.3206550

Geoghegan, B. D. (2020). Orientalism and informatics: Alterity from the
chess-playing Turk to Amazon’s Mechanical Turk. Ex-Position,
43, 45–90.

Gfeller, K., & Lansing, C. R. (1991). Melodic, rhythmic, and timbral
perception of adult cochlear implant users. Journal of Speech, Lan-
guage, and Hearing Research, 34(4), 916–920.

Gianfrancesco, M. A., Tamang, S., Yazdany, J., & Schmajuk, G. (2018).
Potential biases in machine learning algorithms using electronic
health record data. JAMA Internal Medicine, 178(11), 1544–1547.
https://doi.org/10.1001/jamainternmed.2018.3763

Gibbons, S. (2016, July 31). Design thinking 101. Nielsen Norman
Group. https://www.nngroup.com/articles/design-thinking/

Gibson, E. J. (1969).Principles of perceptual learning and development.
New York: Appleton-Century Crofts.

Google. (2020, September 3). Google patents: Brain computer inter-
face. Google Patents. https://patents.google.com/?q=%22brain+
computer+interface%22&after=priority:20190101

Graham, J., Haidt, J., Koleva, S., Motyl, M., Iyer, R., Wojcik, S.
P., & Ditto, P. H. (2013). Moral foundations theory: The prag-
matic validity of moral pluralism. In P. Devine & A. Plant
(Eds.), Advances in experimental social psychology (Vol. 47,
pp. 55–130). Academic Press. https://doi.org/10.1016/B978-0-12-
407236-7.00002-4

Greenlee, E. T., DeLucia, P. R., & Newton, D. C. (2018). Driver vigi-
lance in automated vehicles: Hazard detection failures are a matter
of time. Human Factors, 60(4), 465–476.

Griggs, T., & Wakabayashi, D. (2018, March 20). How a self-driving
uber killed a pedestrian in Arizona. The New York Times.
https://www.nytimes.com/interactive/2018/03/20/us/self-driving-
uber-pedestrian-killed.html

Groom, V., & Nass, C. (2007). Can robots be teammates?: Bench-
marks in human–robot teams. Interaction Studies, 8(3), 483–500.
https://doi.org/10/gfkv9m

Guttman, N., & Gesser-Edelsburg, A. (2011). “The little squealer” or
“the virtual guardian angel”? Young drivers’ and their parents’
perspective on using a driver monitoring technology and its impli-
cations for parent-young driver communication. Journal of Safety
Research, 42(1), 51–59.

Gutzwiller, R. S., Fugate, S., Sawyer, B. D., & Hancock, P. (2015).
The human factors of cyber network defense. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting 2016,
59(1), 322–326.

Hagras, H. (2018). Toward human-understandable, explainable AI.
Computer, 51(9), 28–36.

Halasz, F. G., &Moran, T. P. (1983).Mental models and problem solving
in using a calculator. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems - CHI ’83 (pp. 212–216).
https://doi.org/10.1145/800045.801613

Hancock, P. A. (2014). Automation: How much is too much?
Ergonomics, 57(3), 449–454. https://doi.org/10.1080/00140139
.2013.816375

Hancock, P. A. (2018). On the design of time. Ergonomics in Design,
26(2), 4–9. https://doi.org/10.1177/1064804617735018

Hancock, P. A. (2020a). Driving into the future. Frontiers in Psychology,
11, 2405.

Hancock, P. A. (2020b). The humanity of humanless systems.
Ergonomics in Design, 28(3), 4–6.

Hancock, P. A., Billings, D. R., Schaefer, K. E., Chen, J. Y. C., Visser, E.
J. de, & Parasuraman, R. (2011). A meta-analysis of factors affect-
ing trust in human-robot interaction. Human Factors: The Journal
of the Human Factors and Ergonomics Society, 53(5), 517–527.
https://doi.org/10.1177/0018720811417254

Hancock, P. A., Kessler, T. T., Kaplan, A. D., Brill, J. C., &
Szalma, J. L. (2020). Evolving trust in robots: Specification
through sequential and comparative meta-analyses. Human Fac-
tors, 0018720820922080

Hancock, P. A., Pepe, A. A., & Murphy, L. L. (2005). Hedonomics:
The power of positive and pleasurable ergonomics. Ergonomics
in Design, 13(1), 8–14.

Hancock, P. A, Sawyer, B. D., & Stafford, S. (2015). The effects of dis-
play size on performance. Ergonomics, 58(3), 337–354.

Hannon, D., Rantanen, E., Sawyer, B. D., Ptucha, R., Hughes, A.,
Darveau, K., & Lee, J. D. (2019). A human factors engineer-
ing education perspective on data science, machine learning and
automation. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 63(1), 488–492.

Harris,W. C., Hancock, P. A., Arthur, E. J., &Caird, J. K. (1995). Perfor-
mance, workload, and fatigue changes associated with automation.
The International Journal of Aviation Psychology, 5(2), 169–185.
https://doi.org/10.1207/s15327108ijap0502_3

Harrison, G. W., Haruvy, E., & Rutström, E. E. (2011). Remarks on
virtual world and virtual reality experiments. Southern Economic
Journal, 78(1), 87–94. https://doi.org/10.4284/0038-4038-78.1.87

Heer, J. (2019). Agency plus automation: Designing artificial intel-
ligence into interactive systems. Proceedings of the National
Academy of Sciences, 116(6), 1844–1850.

Hoc, J.-M. (2000). From human–machine interaction to
human–machine cooperation. Ergonomics, 43(7), 833–843.
https://doi.org/10.1080/001401300409044

Hockey, G. R. J., & Wiethoff, M. (1993). Cognitive fatigue in com-
plex decision-making. In S. L. Bonting (Ed.), Advances in space
biology and medicine (Vol. 3, pp. 139–150). Amsterdam: Elsevier.
https://doi.org/10.1016/S1569-2574(08)60101-X



1412 SELECTED APPLICATIONS

Hoff, K. A., &Bashir,M. (2015). Trust in automation: Integrating empir-
ical evidence on factors that influence trust.Human Factors, 57(3),
407–434.

Hollnagel, E., & Bye, A. (2000). Principles for modelling function
allocation. International Journal of Human-Computer Studies, 52,
253–265. https://doi.org/10.1006/ijhc.1999.0288

Horrey, W. J., & Wickens, C. D. (2006). Examining the impact of
cell phone conversations on driving using meta-analytic tech-
niques. Human Factors, 48(1), 196–205. https://doi.org/10.1518/
001872006776412135

How, J. P. (2018). Ethically aligned design. IEEE Control Systems Mag-
azine, 38(3), 3–4.

Huang, W., Kunfeng, W., Yisheng, L., & FengHua, Z. (2016).
Autonomous vehicles testing methods review. 2016 IEEE 19th
International Conference on Intelligent Transportation Sys-
tems (ITSC) (pp. 163–168). https://doi.org/10.1109/ITSC.2016
.7795548

Human Factors and Ergonomics Society. (2020, July 15). Code of
ethics—The Human Factors and Ergonomics Society. Human Fac-
tors and Ergonomics Society. https://www.hfes.org/about-hfes/
code-of-ethics

IAEA. (1992). The Chernobyl accident: Updating of INSAG-1 (Text
INSAG-1). IAEA. https://www.iaea.org/publications/3786/the-
chernobyl-accident-updating-of-insag-1

Igroup Project Consortium. (2015). Igroup Presence Questionnaire.
http://www.igroup.org/pq/ipq/download.php#English

IJsselsteijn, W. A., de Ridder, H., Freeman, J., & Avons, S. E. (2000).
Presence: Concept, determinants, and measurement. Proceedings
of the Human Factors and Ergonomics Society Annual Meeting,
3959, 520–529. https://doi.org/10/fgk32n

Inagaki, T. (2003). Adaptive automation: Sharing and trading of control.
In E. Hollnagel (Ed.), Handbook of cognitive task analysis (pp.
147–169). Mahwah, NJ: Lawrence Erlbaum Associates.

Inagaki, T., & Sheridan, T. B. (2019). A critique of the SAE conditional
driving automation definition, and analyses of options for improve-
ment. Cognition, Technology & Work, 21(4), 569–578.

Jansen, R. J., van der Kint, S. T., & Hermens, F. (2020). Does agree-
ment mean accuracy? Evaluating glance annotation in naturalistic
driving data. Behavior Research Methods. https://doi.org/10.3758/
s13428-020-01446-9

Jarrahi, M. H. (2018). Artificial intelligence and the future of work:
Human-AI symbiosis in organizational decision making. Business
Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018
.03.007

Jeon, C. (2015). The virtual flier: The link trainer, flight simulation, and
pilot identity. Technology and Culture, 56(1), 28–53. https://doi
.org/10.1353/tech.2015.0017

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of
AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399.
https://doi.org/10.1038/s42256-019-0088-2

Johansson, G., & Rumar, K. (1971). Drivers’ brake reaction times.
Human Factors, 13(1), 23–27. https://doi.org/10/gfkwdm

Johnson-Laird, P. N. (1980). Mental models in cognitive science. Cog-
nitive Science, 4(1), 71–115. https://doi.org/10/b9j9k9

Jonah, B. A. (1986). Accident risk and risk-taking behaviour among
young drivers. Accident Analysis & Prevention, 18(4), 255–271.
https://doi.org/10/chdx6p

Jones, M. L., & Meurer, K. (2016). Can (and should) Hello Barbie keep
a secret? 2016 IEEE International Symposium on Ethics in Engi-
neering, Science and Technology (ETHICS) (pp. 1–6). https://doi
.org/10.1109/ETHICS.2016.7560047

Jung, M. F., Lee, J. J., DePalma, N., Adalgeirsson, S. O., Hinds,
P. J., & Breazeal, C. (2013). Engaging robots: Easing complex
human-robot teamwork using backchanneling. Proceedings of the
2013 Conference on Computer Supported Cooperative Work (pp.
1555–1566). https://doi.org/10.1145/2441776.2441954

Kaber, D. B., Omal, E., & Endsley, M. R. (1999). Level of automa-
tion effects on telerobot performance and human operator situation

awareness and subjective workload. Automation Technology and
Human Performance: Current Research and Trends, 165–170.

Kaber, D. B., Riley, J. M., Tan, K.-W., & Endsley, M. R. (2001). On the
design of adaptive automation for complex systems. International
Journal of Cognitive Ergonomics, 5(1), 37–57. https://doi.org/10
.1207/S15327566IJCE0501_3

Kaplan, A. D., Kessler, T. T., Sanders, T. L., Cruit, J., Brill, J. C., &
Hancock, P. A. (2020). A time to trust: Trust as a function of time
in human-robot interaction. In Trust in Human-Robot Interaction
(pp. 143–157). San Diego, CA: Academic Press.

Kearns, M., & Roth, A. (2019). The ethical algorithm: The science of
socially aware algorithm design. Oxford: Oxford University Press.

Kelly, M., Sinha, A., Namkoong, H., Tedrake, R., & Duchi, J. C. (2018).
Scalable end-to-end autonomous vehicle testing via rare-event
simulation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural infor-
mation processing systems, 31 (pp. 9827–9838). Curran Asso-
ciates, Inc. http://papers.nips.cc/paper/8189-scalable-end-to-end-
autonomous-vehicle-testing-via-rare-event-simulation.pdf

Kempton, W. (1986). Two theories of home heat control. Cognitive Sci-
ence, 10(1), 75–90. https://doi.org/10.1207/s15516709cog1001_3

Kempton, W. (1987). Variation in folk models and consequent behavior.
American Behavioral Scientist, 31(2), 203–218. https://doi.org/10
.1177/000276487031002006

Khademi, A., & Honavar, V. (2019). Algorithmic bias in recidivism pre-
diction: A causal perspective. ArXiv:1911.10640 [Cs, Stat]. http://
arxiv.org/abs/1911.10640

Kieras, D. E., & Bovair, S. (1984). The role of a mental model in
learning to operate a device. Cognitive Science, 8(3), 255–273.
https://doi.org/10/cfvbzw

Kirkpatrick, K. (2016). Battling algorithmic bias: How do we ensure
algorithms treat us fairly? Communications of the ACM, 59(10),
16–17. https://doi.org/10.1145/2983270

Klien, G., Woods, D. D., Bradshaw, J. M., Hoffman, R. R., & Feltovich,
P. J. (2004). Ten challenges for making automation a “team play-
er” in joint human-agent activity. IEEE Intelligent Systems, 19(6),
91–95. https://doi.org/10.1109/MIS.2004.74

Kline, D. W., Kline, T. J. B., Fozard, J. L., Kosnik, W., Schieber,
F., & Sekuler, R. (1992). Vision, aging, and driving: The prob-
lems of older drivers. Journal of Gerontology, 47(1), P27–P34.
https://doi.org/10/gfkwcn

Kopec, D., & Tamang, S. (2007). Failures in complex systems: Case
studies, causes, and possible remedies. ACM SIGCSE Bulletin,
39(2), 180–184. https://doi.org/10.1145/1272848.1272905

Körber, M., Cingel, A., Zimmermann, M., & Bengler, K. (2015).
Vigilance decrement and passive fatigue caused by monotony
in automated driving. Procedia Manufacturing, 3, 2403–2409.
https://doi.org/10/gfkwd3

Kozak, J. J., Hancock, P. A., Arthur, E. J., & Chrysler, S. T. (1993).
Transfer of training from virtual reality. Ergonomics, 36(7),
777–784. https://doi.org/10.1080/00140139308967941

Lacey, C., & Caudwell, C. (2019). Cuteness as a ‘Dark Pattern’ in
home robots. 2019 14th ACM/IEEE International Conference on
Human-Robot Interaction (HRI) (pp. 374–381) https://doi.org/10
.1109/HRI.2019.8673274

Lau, N., Fridman, L., Borghetti, B. J., & Lee, J. D. (2018). Machine
learning and human factors: Status, applications, and future direc-
tions, Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, 62(1), 135–138.

Lavie, N. (2010). Attention, distraction, and cognitive control under
load. Current Directions in Psychological Science, 19(3),
143–148. https://doi.org/10.1177/0963721410370295

Lebedev, A. (2011, July 21). The Man Who Saved the World
finally recognized. MosNews. https://web.archive.org/web/
20110721000030/http://www.worldcitizens.org/petrov2.html

Lee, J. D., & See, K. A. (2004). Trust in automation: designing for appro-
priate reliance.Human Factors: The Journal of the Human Factors
and Ergonomics Society, 46(1), 50–80. https://doi.org/10/dr6jf9



HUMAN FACTORS AND ERGONOMICS IN DESIGN OF A3 1413

Lee, K. M. (2004a). Presence, explicated. Communication Theory,

14(1), 27–50. https://doi.org/10/cw7f7f

Lee, K. M. (2004b). Why presence occurs: Evolutionary psychology,

media equation, and presence.Presence: Teleoperators and Virtual

Environments, 13(4), 494–505. https://doi.org/10/bd8dqd

Lerner, N. D. (1993). Brake perception-reaction times of older

and younger drivers. Proceedings of the Human Factors

and Ergonomics Society Annual Meeting, 37(2), 206–210.

https://doi.org/10/gfkwcq

Li, J., Cho, M.-J., Xuan, Z., Malle, B. F., & Ju, W. (2016, April 5). From

trolley to autonomous vehicle: Perceptions of responsibility and

moral norms in traffic accidents with Self-driving cars. SAE 2016

World Congress. http://papers.sae.org/2016-01-0164/

Licklider, J. C. R. (1960). Man-computer symbiosis. IRE Transactions

onHuman Factors in Electronics HFE-1, (1), 4–11. https://doi.org/

10.1109/THFE2.1960.4503259

Lin, P. (2017, April 5). Here’s how Tesla solves a self-driving crash

dilemma. Forbes. https://www.forbes.com/sites/patricklin/2017/

04/05/heres-how-tesla-solves-a-self-driving-crash-dilemma/

Lopez, J. (2019, July 11). GM Super Cruise rumored to receive level

3 upgrades. GM Authority. http://gmauthority.com/blog/2019/07/

gm-super-cruise-rumored-to-receive-level-3-upgrades/

Lorenz, B., Di Nocera, F., Röttger, S., & Parasuraman, R. (2001). The

effects of level of automation on the out-of-the-loop unfamiliar-

ity in a complex dynamic fault-management task during simulated

spaceflight operations. Proceedings of the Human Factors and

Ergonomics Society Annual Meeting, 45(2), 44–48.

Louw, T., Kuo, J., Romano, R., Radhakrishnan, V., Lenné, M. G., &

Merat, N. (2019). Engaging in NDRTs affects drivers’ responses

and glance patterns after silent automation failures. Transportation

Research Part F: Traffic Psychology and Behaviour, 62, 870–882.

https://doi.org/10.1016/j.trf.2019.03.020

Mackworth, J. F. (1969). Vigilance and habituation: A neuropsycholog-

ical approach. New York: Penguin.

Mackworth, J. F. (1970). Vigilance and attention: A signal detection

approach. New York: Penguin.

Mackworth, N. H. (1948). The breakdown of vigilance during pro-

longed visual search. Quarterly Journal of Experimental Psychol-

ogy, 1(1), 6–21. https://doi.org/10/dqn8q5

Malle, B. F., Scheutz, M., Arnold, T., Voiklis, J., & Cusimano, C. (2015).

Sacrifice one for the good of many?: People apply different moral

norms to human and robot agents. Proceedings of the Tenth Annual

ACM/IEEE International Conference on Human-Robot Interac-

tion (pp. 117–124). https://doi.org/10/gfkwb3

Manyika, J. (2017). A future that works: AI, automation, employment,

and productivity. McKinsey Global Institute Research, Technical

Report, 60.

Maule, A. J., Hockey, G. R. J., & Bdzola, L. (2000). Effects of

time-pressure on decision-making under uncertainty: Changes in

affective state and information processing strategy. Acta Psycho-

logica, 104(3), 283–301. https://doi.org/10/dm25cf

Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integra-

tive model of organizational trust. The Academy of Management

Review, 20(3), 709. https://doi.org/10/fs6wzz

McGehee, D. V., Brewer, M., Schwarz, C., & Walker Smith, B. (2016).

Review of automated vehicle technology: Policy and implemen-

tation implications (MATC-MU:276). University of Iowa. https://

rosap.ntl.bts.gov/view/dot/30702

McKnight, A. J., &McKnight, A. S. (2003). Young novice drivers: Care-

less or clueless? Accident Analysis & Prevention, 35(6), 921–925.

https://doi.org/10.1016/S0001-4575(02)00100-8

Merkow,M. S., &Breithaupt, J. (2014). Information security: Principles

and practices. Harlow: Pearson Education.

Meyer, J., & Lee, J. D. (2013). Trust, reliance, and compli-

ance. Oxford: Oxford University Press. https://doi.org/10.1093/

oxfordhb/9780199757183.013.0007

Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Aug-
mented reality: A class of displays on the reality-virtuality con-
tinuum. SPIE, 2351, 282–292.

Miller, D. (2016). AgentSmith: Exploring agentic systems. Proceedings
of the 2016CHIConference Extended Abstracts onHumanFactors

in Computing Systems (pp. 234–238). https://doi.org/10/gfkwdx

Miller, D., & Ju, W. (2015). Joint cognition in automated driving: Com-
bining human and machine intelligence to address novel prob-
lems. 2015 AAAI Spring Symposium Series. http://www.aaai.org/
ocs/index.php/SSS/SSS15/paper/view/10308

Miller, J., Ward, C., Lee, C., D’Ambrosio, L., & Coughlin, J. (2018).
Sharing is caring: The potential of the sharing economy to support
aging in place. Gerontology & Geriatrics Education, 0(0), 1–23.
https://doi.org/10.1080/02701960.2018.1428575

Mittelstadt, B., Russell, C., & Wachter, S. (2019). Explaining explana-
tions in AI. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 279–288.

Nass, C., Fogg, B. J., & Moon, Y. (1996). Can computers be team-
mates? International Journal of Human-Computer Studies, 45(6),
669–678. https://doi.org/10.1006/ijhc.1996.0073

Nass, C., & Moon, Y. (2000). Machines and mindlessness: Social
responses to computers. Journal of Social Issues, 56(1), 81–103.
https://doi.org/10.1111/0022-4537.00153

Navarrete, C. D., McDonald, M. M., Mott, M. L., & Asher, B.
(2012). Virtual morality: Emotion and action in a simulated
three-dimensional “trolley problem.” Emotion, 12(2), 364–370.
https://doi.org/10/fcqpqh

Navon, D., & Gopher, D. (1978). Interpretations of task difficulty in
terms of resources: Efficiency, load, demand, and cost composi-
tion. (No. ADA070937). Technion-Israel Institute of Technology.
https://apps.dtic.mil/dtic/tr/fulltext/u2/a070937.pdf

Nebeker, C., Torous, J., & Ellis, R. J. B. (2019). Building the case for
actionable ethics in digital health research supported by artificial
intelligence. BMC Medicine, 17(1), 137.

Neisser, U. (1976). General, academic, and artificial intelligence. The
Nature of Intelligence, 135, 144.

Nicolelis, M. (2011). Beyond boundaries: The new neuroscience of con-
necting brains with machines—and how it will change our lives.
Basingstoke: Macmillan.

Nissenbaum, H. (1996). Accountability in a computerized
society. Science and Engineering Ethics, 2(1), 25–42.
https://doi.org/10/dn6p6h

Norman, D. A. (1968). Toward a theory of memory and attention.
Psychological Review, 75(6), 522–536. https://doi.org/10.1037/
h0026699

Norman, D. A. (1983). Some observations on mental models. Mental
Models, 7(112), 7–14.

Nyholm, S., & Frank, L. E. (2017). From sex robots to love robots: Is
mutual love with a robot possible? Proceedings of the Human Fac-
tors and Ergonomics Society Annual Meeting, 12.

Nyholm, S., & Smids, J. (2020). Can a robot be a good colleague? Sci-
ence and Engineering Ethics, 26(4), 2169–2188.

Oh, C., Song, J., Choi, J., Kim, S., Lee, S., & Suh, B. (2018). I lead,
you help but only with enough details: Understanding user expe-
rience of co-creation with artificial intelligence. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Sys-

tems, 1–13. https://doi.org/10.1145/3173574.3174223

Openwater. (2020). Openwater. https://www.openwater.cc

Orne, M. T., & Holland, C. H. (1968). On the ecological validity of labo-
ratory deceptions. International Journal of Psychiatry, 6, 282–293.

Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, mis-
use, disuse, abuse. Human Factors: The Journal of the Human
Factors and Ergonomics Society, 39(2), 230–253. https://doi.org/
10.1518/001872097778543886

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model
for types and levels of human interaction with automation. IEEE



1414 SELECTED APPLICATIONS

Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, 30(3), 286–297. https://doi.org/10/c6zf92

Peña Gangadharan, S., Eubanks, V., & Barocas, S. (Eds.). (2014).
Data and discrimination: Collected essays. Open Technol-
ogy Institute. https://rws511.pbworks.com/w/file/fetch/88176947/
OTI-Data-an-Discrimination-FINAL-small.pdf

Pernice, K. (2015, February 22). Emotional design fail: Divorcing my
nest thermostat. Nielsen Norman Group. https://www.nngroup
.com/articles/emotional-design-fail/

Philip, P., Sagaspe, P.,Moore, N., Taillard, J., Charles, A., Guilleminault,
C., & Bioulac, B. (2005). Fatigue, sleep restriction and driving
performance. Accident Analysis & Prevention, 37(3), 473–478.
https://doi.org/10.1016/j.aap.2004.07.007

PhishMe. (2015). Enterprise phishing susceptibility report. PhishMe.
https://cofense.com/wp-content/uploads/2017/10/PhishMe_
EnterprisePhishingSusceptibilityReport_2015_Final.pdf

Posey, C., Roberts, T. L., Lowry, P. B., Bennett, R. J., & Courtney,
J. F. (2013). Insiders’ Protection of organizational information
assets: Development of a systematics-based taxonomy and the-
ory of diversity for protection-motivated behaviors.MISQuarterly,
37(4), 1189–1210.

Posner, M. I., Snyder, C. R. R., & Davidson, B. J. (1980). Atten-
tion and the detection of signals. Journal of Experimental Psy-
chology: General, 109(2), 160–174. https://doi.org/10.1037/0096-
3445.109.2.160

Proud, R. W., Hart, J. J., & Mrozinski, R. B. (2003). Methods for deter-
mining the level of autonomy to design into a human spaceflight
vehicle: A function specific approach. Lyndon B Johnson Center,
Houston, TX: National Aeronautics and Space Administration.

Raisch, S., & Krakowski, S. (2020). Artificial intelligence and manage-
ment: The automation-augmentation paradox. Academy of Man-
agement Review.

Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru, T., Hutchin-
son, B., Smith-Loud, J., Theron, D., & Barnes, P. (2020). Closing
the AI accountability gap: defining an end-to-end framework for
internal algorithmic auditing. Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, 12.

Ramachandran, V. S. (1998). Consciousness and body image: Lessons
from phantom limbs, Capgras syndrome and pain asymbolia.
Philosophical Transactions of the Royal Society of London. Series
B: Biological Sciences, 353(1377), 1851–1859. https://doi.org/10
.1098/rstb.1998.0337

Ramachandran, V. S. (2012). The tell-tale brain: A neuroscientist’s quest
for what makes us human. New York: W. W. Norton & Company.

Rasmussen, J. (1986). Information processing and human-machine
interaction: An approach to cognitive engineering. Amsterdam:
North-Holland.

Reeves, B., & Nass, C. (1996). The media equation: How people treat
computers, television, and new media like real people and places.
CSLI Publications and Cambridge University Press. http://www
.humanityonline.com/docs/the%20media%20equation.pdf

Reeves, B., Ram, N., Robinson, T. N., Cummings, J. J., Giles, C. L.,
Pan, J., Chiatti, A., Cho, M., Roehrick, K., Yang, X., Gagneja,
A., Brinberg, M., Muise, D., Lu, Y., Luo, M., Fitzgerald, A., &
Yeykelis, L. (2019). Screenomics: A framework to capture and
analyze personal life experiences and the ways that technology
shapes them. Human–Computer Interaction, 0(0), 1–52. https://
doi.org/10.1080/07370024.2019.1578652

Reichardt, C. S. (2011). Criticisms of and an alternative to the Shadish,
Cook, and Campbell validity typology. New Directions for Evalu-
ation, 2011(130), 43–53. https://doi.org/10.1002/ev.364

Richardson, G. P., Andersen, D. F., Maxwell, T. A., & Stewart, T. R.
(1994). Foundations of mental model research. Proceedings of the
1994 International System Dynamics Conference (pp. 181–192).
http://www.albany.edu/~gpr/MentalModels.pdf

Riley, V. (1989). A general model of mixed-initiative human-machine
systems. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 33(2), 124–128. https://doi.org/10.1177/
154193128903300227

Roelfsema, P. R., Denys, D., & Klink, P. C. (2018). Mind reading and
writing: the future of neurotechnology. Trends in Cognitive Sci-
ences, 22(7), 598–610. https://doi.org/10.1016/j.tics.2018.04.001

Rogers, E. M., & Bhowmik, D. K. (1970). Homophily-heterophily: rela-
tional concepts for communication research.Public OpinionQuar-
terly, 34(4), 523. https://doi.org/10.1086/267838

SAE International. (2016). Taxonomy and definitions for terms related
to driving automation systems for on-road motor vehicles
(No. J3016A). SAE International. http://standards.sae.org/j3016_
201609/

Salvucci, D. D. (2013). Multitasking. Oxford: Oxford University Press.
https://doi.org/10.1093/oxfordhb/9780199757183.013.0004

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An inte-
grated theory of concurrent multitasking. Psychological Review,
115(1), 101–130. https://doi.org/10.1037/0033-295X.115.1.101

Salvucci, D. D., & Taatgen, N. A. (2010). The multitasking mind.
Oxford: Oxford University Press.

Sarter, N. B., & Woods, D. D. (1995). How in the world did we ever get
into that mode? Mode error and awareness in supervisory control.
Human Factors, 37(1), 5–19. https://doi.org/10/dj23nb

Sarter, N. B., Woods, D. D., & Billings, C. E. (1997). Automation sur-
prises. In G. Salvendy (Ed.), Handbook of human factors and
ergonomics (pp. 1926–1943). Hoboken, NJ: Wiley.

Sauer, J., Nickel, P., & Wastell, D. (2013). Designing automation
for complex work environments under different levels of stress.
Applied Ergonomics, 44(1), 119–127.

Sawyer, B. D., Dobres, J., Chahine, N., & Reimer, B. (2017). The cost
of cool: Typographic style legibility in reading at a glance. Pro-
ceedings of the Human Factors and Ergonomics Society Annual
Meeting, 61(1), 833–837.

Sawyer, B. D., Dobres, J., Chahine, N., & Reimer, B. (2020).
The great typography bake-off: Comparing legibility at-a-glance.
Ergonomics, 63(4), 391–398.

Sawyer, B. D., Finomore, V. S., Calvo, A. A., & Hancock, P. A. (2014).
Google Glass: A driver distraction cause or cure? Human Factors,
56(7), 1307–1321.

Sawyer, B. D., & Hancock, P. A. (2018). Hacking the human: The preva-
lence paradox in cybersecurity. Human Factors, 60(5), 597–609.

Sawyer, B. D., Mehler, B., & Reimer, B. (2017). Toward an antiphony
framework for dividing tasks into subtasks. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting.

Sawyer, B. D.,Wolfe, B., Dobres, J., Chahine, N., Mehler, B., & Reimer,
B. (2020). Glanceable, legible typography over complex back-
grounds. Ergonomics, 1–20.

Scerbo, M. W. (1996). Theoretical perspectives on adaptive automation.
In M. Mustapha & P. A. Hancock (Eds.), Human performance in
automated and autonomous systems: Current theory and methods
(pp. 103–149). Boca Raton, FL: CRC Press.

Schaefer, K. E., Adams, J. K., Cook, J. G., Bardwell-Owens, A., &
Hancock, P. A. (2015). The future of robotic design: Trends from
the history of media representations. Ergonomics in Design, 23(1),
13–19.

Sebescen, N., & Vitak, J. (2017). Securing the human: Employee
security vulnerability risk in organizational settings. Journal of
the Association for Information Science and Technology, 68(9),
2237–2247. https://doi.org/10.1002/asi.23851

Shahriari, K., & Shahriari, M. (2017). IEEE standard review—Ethically
aligned design: A vision for prioritizing human wellbeing with
artificial intelligence and autonomous systems. 2017 IEEECanada
International Humanitarian Technology Conference (IHTC) (pp.
197–201). https://doi.org/10.1109/IHTC.2017.8058187

Shekhar, S. S. (2019). Artificial intelligence in automation. Artificial
Intelligence, 3085(06), 14–17.

Sheridan, T. B. (1975). Considerations in modeling the human supervi-
sory controller. IFAC Proceedings Volumes, 8(1, Part 3), 223–228.
https://doi.org/10/gfkwdv

Sheridan, T. B. (1992a). Telerobotics, automation, and human supervi-
sory control. Cambridge, MA: MIT Press.



HUMAN FACTORS AND ERGONOMICS IN DESIGN OF A3 1415

Sheridan, T. B. (1992b). Musings on telepresence and virtual presence.
Presence: Teleoperators and Virtual Environments, 1(1), 120–126.
https://doi.org/10/gdcftg

Sheridan, T. B. (2002). Humans and automation: System design and
research issues. Human Factors and Ergonomics Society.

Sheridan, T. B. (2006). Supervisory control. In G. Salvendy (Ed.),Hand-
book of human factors and ergonomics (3rd ed., pp. 1025–1052).
Hoboken, NJ: Wiley. https://doi.org/10.1002/0470048204.ch38

Sheridan, T. B., & Hennessy, R. T. (1984). Research and modeling of
supervisory control behavior: Report of a workshop. Washington,
DC: National Research Council Committee on Human Factors.
https://apps.dtic.mil/sti/citations/ADA149621

Sheridan, T. B., & Parasuraman, R. (2005). Human-automation interac-
tion. Reviews of Human Factors and Ergonomics, 1(1), 89–129.
https://doi.org/10.1518/155723405783703082

Sheridan, T. B., & Verplank, W. L. (1978). Human and computer control
of undersea teleoperators. NASA Technical Reports Server.

Shneiderman, B. (1998). Codex, Memex, Genex: The pursuit
of transformational technologies. International Journal of
Human–Computer Interaction, 10(2), 87–106. https://doi.org/10
.1207/s15327590ijhc1002_1

Siau, K., & Wang, W. (2018). Building trust in artificial intelligence,
machine learning, and robotics. Cutter Business Technology Jour-
nal, 31(2), 47–53.

Simon, H. A. (1965). The shape of automation for men and management
(1st ed.). New York: Harper & Row Publishers, Inc.

Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sus-
tained inattentional blindness for dynamic events. Perception,
28(9), 1059–1074. https://doi.org/10.1068/p281059

Sirkin, D., Martelaro, N., Johns, M., & Ju, W. (2017). Toward measure-
ment of situation awareness in autonomous vehicles. Proceedings
of the 2017 CHI Conference on Human Factors in Computing Sys-
tems (pp. 405–415). https://doi.org/10.1145/3025453.3025822

Skrypchuk, L., Langdon, P., Sawyer, B. D., & Clarkson, P. J. (2020).
Unconstrained design: Improving multitasking with in-vehicle
information systems through enhanced situation awareness. Theo-
retical Issues in Ergonomics Science, 21(2), 183–219.

Skrypchuk, L., Langdon, P., Sawyer, B. D., Mouzakitis, A., & Clark-
son, P. J. (2019). Enabling multitasking by designing for situation
awareness within the vehicle environment. Theoretical Issues in
Ergonomics Science, 20(2), 105–128.

Slater, M., & Usoh, M. (1993). Presence in immersive virtual envi-
ronments. In Proceedings of IEEE Virtual Reality Annual Inter-
national Symposium (pp. 90–96). https://doi.org/10.1109/VRAIS
.1993.380793

Smith, A., & Anderson, M. (2018). Social media use in 2018. Pew
Research Center, 1, 1–4.

Smith, K. (1989). Computer security-threats, vulnerabilities, and coun-
termeasures. Information Age, 11(4), 205–210.

Smith, K., & Hancock, P. A. (1995). Situation awareness is adap-
tive, externally directed consciousness. Human Factors, 37(1),
137–148.

Sommer, D., & Golz, M. (2010). Evaluation of PERCLOS based cur-
rent fatiguemonitoring technologies. In 2010 Annual International
Conference of the IEEE Engineering in Medicine and Biology (pp.
4456–4459). https://doi.org/10.1109/IEMBS.2010.5625960

Stark, L. (2016). The emotional context of information privacy.
The Information Society, 32(1), 14–27. https://doi.org/10.1080/
01972243.2015.1107167

Sujan, M., White, S., Furniss, D., Habli, I., Grundy, K., Grundy, H.,
Nelson, D., Elliott, M., & Reynolds, N. (2019). Human factors
challenges for the safe use of artificial intelligence in patient care.
BMJ Health and Care Informatics.

Sütfeld, L. R., Gast, R., König, P., & Pipa, G. (2017). Using vir-
tual reality to assess ethical decisions in road traffic scenar-
ios: Applicability of value-of-life-based models and influences of
time pressure. Frontiers in Behavioral Neuroscience, 11. https://
doi.org/10/gfkwc2

Svenson, O., & Maule, A. J. (Eds.). (1993). Time pressure and stress in
human judgment and decision making. New York: Plenum Press.

Takayama, L., Groom, V., &Nass, C. (2009). I’m sorry, Dave: I’m afraid
I won’t do that: Social aspects of human-agent conflict. InProceed-
ings of the SIGCHI Conference on Human Factors in Computing

Systems (pp. 2099–2108). https://doi.org/10/dpkr3w

Takayama, L., Ju, W., & Nass, C. (2008). Beyond dirty, dangerous and
dull: What everyday people think robots should do. In 2008 3rd
ACM/IEEE International Conference on Human-Robot Interac-

tion (HRI) (pp. 25–32). https://doi.org/10.1145/1349822.1349827

Taylor, M. (2016, October 7). Self-driving Mercedes-Benzes will
prioritize occupant safety over pedestrians. Car and Driver. http://
blog.caranddriver.com/self-driving-mercedes-will-prioritize-
occupant-safety-over-pedestrians/

Thaler, R. H., & Sunstein, C. R. (2009). Nudge: Improving decisions
about health, wealth, and happiness (Rev. and expanded ed.). New
York: Penguin.

Thompson, N. C., Greenewald, K., Lee, K., & Manso, G. F. (2020).
The computational limits of deep learning. ArXiv Preprint

ArXiv:2007.05558.

Uber. (2019, December). Uber’s US safety report. https://www.uber
.com/us/en/about/reports/us-safety-report/

Vamplew, P., Dazeley, R., Foale, C., Firmin, S., & Mummery, J. (2018).
Human-aligned artificial intelligence is a multiobjective problem.
Ethics and Information Technology, 20(1), 27–40.

van der Vecht, B., van Diggelen, J., Peeters, M., Barnhoorn, J., & van
der Waa, J. (2018). SAIL: A social artificial intelligence layer for
human-machine teaming. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, 262–274.

van Maanen, P.-P., Lindenberg, J., & Neerincx, M. A. (2005). Integrat-
ing human factors and artificial intelligence in the development
of human-machine cooperation. Proceedings of the 2005 Inter-
national Conference on Artificial Intelligence. 2005 International
Conference on Artificial Intelligence (ICAI’05).

Verberne, F. M. F., Ham, J., & Midden, C. J. H. (2012). Trust in smart
systems sharing driving goals and giving information to increase
trustworthiness and acceptability of smart systems in cars. Human
Factors: The Journal of the Human Factors and Ergonomics Soci-

ety, 54(5), 799–810. https://doi.org/10.1177/0018720812443825

Verberne, F. M. F., Ham, J., & Midden, C. J. H. (2015). Trusting a
virtual driver that looks, acts, and thinks like you. Human Fac-
tors: The Journal of the Human Factors and Ergonomics Society,

0018720815580749. https://doi.org/10/gfkv99

Vieane, A., Funke, G., Gutzwiller, R., Mancuso, V., Sawyer, B. D.,
& Wickens, C. (2016). Addressing human factors gaps in cyber
defense. Proceedings of the Human Factors and Ergonomics Soci-
ety Annual Meeting, 60(1), 770–773.

Vincent, J. (2018, January 12). Google ‘fixed’ its racist algorithm by
removing gorillas from its image-labeling tech. The Verge. https://
www.theverge.com/2018/1/12/16882408/google-racist-gorillas-
photo-recognition-algorithm-ai

Wallace, S., Treitman, R., Kumawat, N., Arpin, K., Huang, J., Sawyer,
B. D., & Bylinskii, Z. (2020a). Towards readability individuation:
The right changes to text format make large impacts on reading
speed. Journal of Vision, 20(10), 17–17.

Wallace, S., Treitman, R., Kumawat, N., Arpin, K., Huang, J., Sawyer,
B., & Bylinskii, Z. (2020b). Individual differences in font prefer-
ence & effectiveness as applied to interlude reading in the digital
age. Journal of Vision, 20(11), 412–412.

Waller, P. F. (1991). The older driver. Human Factors: The Journal

of the Human Factors and Ergonomics Society, 33(5), 499–505.
https://doi.org/10/gfkwcm

Waltzman, R. (2017). The weaponization of information: The need for
cognitive security. SantaMonica, CA: RANDCorporation. https://
doi.org/10.7249/CT473

Wang, W., & Siau, K. (2019). Artificial intelligence, machine learn-
ing, automation, robotics, future of work and future of humanity:



1416 SELECTED APPLICATIONS

A review and research agenda. Journal of Database Management
(JDM), 30(1), 61–79.

Warwick, K. (2016). Transhumanism: Some practical possibilities.
FIfF-Kommunikation. Zeitschrift für Informatik und Gesellschaft,
2, 24–25.

Weitz, K., Schiller, D., Schlagowski, R., Huber, T., & André, E. (2020).
“Let me explain!”: Exploring the potential of virtual agents in
explainable AI interaction design. Journal on Multimodal User
Interfaces, 1–12.

Wickens, C. D. (2008). Multiple resources and mental work-
load. Human Factors, 50(3), 449–455. https://doi.org/10.1518/
001872008X288394

Wickens, C. D. (2013). Attention. Oxford: Oxford University Press.
https://doi.org/10.1093/oxfordhb/9780199757183.013.0003

Wickens, C. D., & Gutzwiller, R. S. (2017). The status of the strate-
gic task overload model (STOM) for predicting multi-task man-
agement. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 61(1), 757–761. https://doi.org/10.1177/
1541931213601674

Wickens, C. D., Gutzwiller, R. S., Vieane, A., Clegg, B. A., Sebok, A., &
Janes, J. (2016). Time sharing between robotics and process con-
trol: Validating a model of attention switching. Human Factors,
58(2), 322–343. https://doi.org/10.1177/0018720815622761

Wickens, C. D., Santamaria, A., & Sebok, A. (2013). A computational
model of task overload management and task switching. Proceed-
ings of the Human Factors and Ergonomics Society Annual Meet-
ing, 57(1), 763–767. https://doi.org/10.1177/1541931213571167

Wiener, N., & Heims, S. J. (1989). The human use of human beings:
Cybernetics and society. New York: Free Association Books.

Wilson, J. R., & Rutherford, A. (1989). Mental models: Theory and
application in human factors. Human Factors, 31(6), 617–634.
https://doi.org/10.1177/001872088903100601

Winfield, A. F., Michael, K., Pitt, J., & Evers, V. (2019). Machine ethics:
The design and governance of ethical AI and autonomous systems.
Proceedings of the IEEE, 107(3), 509–517.

Wintersberger, P., Frison, A.-K., Riener, A., & Hasirlioglu, S. (2017).
The experience of ethics: Evaluation of self harm risks in auto-
mated vehicles. In IEEE Intelligence Vehicles Symposium (vol. 28,
pp. 385–391). Redondo Beach, CA.

Wolfe, B., Sawyer, B. D., & Rosenholtz, R. (2020). Toward a the-
ory of visual information acquisition in driving. Human Factors,
0018720820939693.

Woods, D. (1994). Automation: Apparent simplicity, real complexity.
Human Performance in Automated Systems: Current Research and
Trends, 1–7.

Yeykelis, L., Cummings, J. J., & Reeves, B. (2014). Multitasking on a
single device: Arousal and the frequency, anticipation, and predic-
tion of switching between media content on a computer: multi-
tasking and arousal. Journal of Communication, 64(1), 167–192.
https://doi.org/10/f57c3z

Yeykelis, L., Cummings, J. J., & Reeves, B. (2017). The fragmenta-
tion of work, entertainment, e-mail, and news on a personal com-
puter: motivational predictors of switching betweenmedia content.
Media Psychology, 0(0), 1–26. https://doi.org/10/gfkwdj

Yoo, C. W., Sanders, G. L., & Cerveny, R. P. (2018). Exploring the
influence of flow and psychological ownership on security educa-
tion, training and awareness effectiveness and security compliance.
Decision Support Systems, 108, 107–118. https://doi.org/10.1016/
j.dss.2018.02.009

Young, M. S., & Stanton, N. A. (2002a). Attention and automation: New
perspectives on mental underload and performance. Theoretical
Issues in Ergonomics Science, 3(2), 178–194. https://doi.org/10
.1080/14639220210123789

Young, M. S., & Stanton, N. A. (2002b). Malleable attentional
resources theory: A new explanation for the effects of men-
tal underload on performance. Human Factors: The Journal of
the Human Factors and Ergonomics Society, 44(3), 365–375.
https://doi.org/10/d6m77b

Young, M. S., & Stanton, N. A. (2006). The decay of malleable
attentional resources theory. In P. D. Bust (Ed.), Contemporary
ergonomics (pp. 253–257). London: Taylor & Francis. https://
www.researchgate.net/profile/Neville_Stanton/publication/
289423242_The_decay_of_malleable_attentional_resources_
theory/links/569ffb3a08ae4af52546db31.pdf

Yu, H., Shen, Z., Miao, C., Leung, C., Lesser, V. R., & Yang, Q.
(2018). Building ethics into artificial intelligence. ArXiv Preprint
ArXiv:1812.02953.

Zimmermann, A., & Di Rosa, E. (2019, December 12). Technology
can’t fix algorithmic injustice. Boston Review. http://bostonreview
.net/science-nature-politics/annette-zimmermann-elena-di-rosa-
hochan-kim-technology-cant-fix-algorithmic.


