
Ergonomics

ISSN: 0014-0139 (Print) 1366-5847 (Online) Journal homepage: www.tandfonline.com/journals/terg20

Detection of error-related negativity in complex
visual stimuli: a new neuroergonomic arrow in the
practitioner’s quiver

Ben D. Sawyer, Waldemar Karwowski, Petros Xanthopoulos & P. A. Hancock

To cite this article: Ben D. Sawyer, Waldemar Karwowski, Petros Xanthopoulos & P. A.
Hancock (2017) Detection of error-related negativity in complex visual stimuli: a new
neuroergonomic arrow in the practitioner’s quiver, Ergonomics, 60:2, 234-240, DOI:
10.1080/00140139.2015.1124928

To link to this article:  https://doi.org/10.1080/00140139.2015.1124928

Published online: 23 Mar 2016.

Submit your article to this journal 

Article views: 449

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=terg20

https://www.tandfonline.com/journals/terg20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00140139.2015.1124928
https://doi.org/10.1080/00140139.2015.1124928
https://www.tandfonline.com/action/authorSubmission?journalCode=terg20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=terg20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00140139.2015.1124928?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00140139.2015.1124928?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00140139.2015.1124928&domain=pdf&date_stamp=23%20Mar%202016
http://crossmark.crossref.org/dialog/?doi=10.1080/00140139.2015.1124928&domain=pdf&date_stamp=23%20Mar%202016
https://www.tandfonline.com/doi/citedby/10.1080/00140139.2015.1124928?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/00140139.2015.1124928?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=terg20


Ergonomics, 2017
VoL. 60, no. 2, 234–240
http://dx.doi.org/10.1080/00140139.2015.1124928

Detection of error-related negativity in complex visual stimuli: a new 
neuroergonomic arrow in the practitioner’s quiver

Ben D. Sawyera,b, Waldemar Karwowskib, Petros Xanthopoulosb and P. A. Hancocka,c

aDepartment of Psychology, University of central Florida, orlando, FL, UsA; bDepartment of industrial Engineering, University of central Florida, 
orlando, FL, UsA; cinstitute for simulation and Training, University of central Florida, orlando, FL, UsA

ABSTRACT
Brain processes responsible for the error-related negativity (ERN) evoked response potential (ERP) 
have historically been studied in highly controlled laboratory experiments through presentation 
of simple visual stimuli. The present work describes the first time the ERN has been evoked and 
successfully detected in visual search of complex stimuli. A letter flanker task and a motorcycle 
conspicuity task were presented to participants during electroencephalographic (EEG) recording. 
Direct visual inspection and subsequent statistical analysis of the resultant time-locked ERP data 
clearly indicated that the ERN was detectable in both groups. Further, the ERN pattern did not differ 
between groups. Such results show that the ERN can be successfully elicited and detected in visual 
search of complex static images, opening the door to applied neuroergonomic use. Harnessing 
the brain’s error detection system presents significant opportunities and complex challenges, and 
implication of such are discussed in the context of human-machine systems.

Practitioner Summary: For the first time, error-related negativity (ERN) has been successfully 
elicited and detected in a visually complex applied search task. Brain-process-based error detection 
in human-machine systems presents unique challenges, but promises broad neuroergonomic 
applications.
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1. Introduction

Error related negativity (ERN) is one of the brain’s evoked 
response potentials (ERP) that occurs when a human actor 
becomes aware of their own error. Relative to the time of 
such an erroneous response, for averaged data, the ERN 
appears within a latency around 100 ms in the form of a 
pronounced negative deflection for errors as compared 
to non-errors (see Gehring et al. 2012; for a more detailed 
overview). ERNs are generally best detected over the fron-
tal scalp, closest to the ‘Cz’, electrode of the 10–20 system 
(Homan, Herman, and Purdy 1987), although they can 
also be measured at the Fz and Pz electrodes (Luck and 
Kappenman 2011). The anterior cingulate cortex (ACC) has 
been identified as the most likely primary causal neural 
structure for the ERN (Gehring et al. 1993; Debener et al. 
2005).

The ERN is a well-studied ERP, but very little existing 
work explores the applied potential of this phenomenon. 
Clinical psychopathology has sought to diagnostically 
use individual differences in ERN magnitude, for example, 
as a marker for potential disturbances (for an overview 
see Olvet and Hajcak 2008). Similar efforts exist outside 

of pathology; for example, the ERN’s magnitude corre-
lates positively with academic performance (Hirsh and 
Inzlicht 2010). An ERP marker for error detection would 
be of great value to the neuroergonomic practitioner (see 
Parasuraman 2003), but would also need to be robust to the 
more complex environmental stimuli that occur beyond 
controlled laboratory environments. This challenge pre-
sents distinct difficulties; there has been little exploration 
of the ERN in complex applied contexts, with associated 
complex visual stimuli, and no evidence that it could be 
either elicited or detected in these latter circumstances.

ERN is essentially a subjective response, the elicitation 
of which is informed by the cognitive model of what is 
‘correct’. Such models are unique by individual and sit-
uation (Hester, Fassbender, and Garavan 2004; Luck and 
Kappenman 2011). A participant in an ERN experiment 
may therefore detect errors beyond the context of the 
experiment at hand (Luck and Kappenman 2011). These 
include, for example, social errors, past errors recalled 
in mid-task, the suppression of behaviours (e.g. check-
ing a watch that has been removed for the experiment) 
or the error of inattention to the task itself; each might 
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1.2. Motorcycle conspicuity

The relative inability of motorcycles to attract the attention 
of other drivers, as compared to other vehicles in the traffic 
stream, has been a subject of study for an extended period 
of time (Engel 1971, 1977; Thomson 1980; Hancock et al. 
1990; Caird and Hancock 1994; Ledbetter et al. 2012). A 
disproportionate number of motorcycle collisions involve 
the colliding party’s report of not having seen the motor-
cycle, an effect which can be reproduced in the laboratory 
(Hurt, Ouellet, & Thom, 1981; Wulf, Hancock, and Rahimi 
1989). For the present study, this difficult detection prob-
lem was identified as an effective way to consistently 
generate errors among highly trained participants in an 
unambiguous applied context. Arguably, the flanker letter 
task has some parity to this motorcycle detection task. In 
the former, a series of static images is observed to pro-
duce a choice between two letters. This decision is compli-
cated by distractors, while speeded binary responses are 
collected. In the latter motorcycle task, a series of static 
images are observed to elicit a binary decision, motorcycle 
or no motorcycle. This decision is also complicated by dis-
tractors in the form of environmental variation and other 
roadway vehicles, and again, speeded binary responses are 
collected. In this study, the visually complex motorcycle 
detection problem becomes a source of applied errors that 
may be detected through ERP analysis.

Formally, then, the present work sought to determine 
whether ERN could be elicited in a motorcycle detection 
task. For comparison purposes, a replication of the flanker 
letter task used by Gehring et al. (1993) was collected. The 
result was a within-participant 2(task: flanker, motorcycle) 
x 2(response: correct, incorrect) design. We predicted that, 
for both tasks, EEG voltage level at Cz would vary signifi-
cantly between response types so that incorrect responses 
would result in a negative deflection. It was further hypoth-
esised that this pattern would not be significantly affected 
by task type, i.e., no significant interaction of task type on 
ERN status was predicted. There was a concern that differ-
ences in baseline error rate between the motorcycle and 

produce a similar ERN response. The experimenter there-
fore faces problems disambiguating these from ‘correct’ 
errors expected from the experimental protocol itself. 
Such potential for confounds has understandably led past 
researchers to adopt conservative choices in their manip-
ulated stimuli. Unambiguous choices such as letters thus 
prove to be a common choice for ERN experiments (Riesel 
et al. 2013), and even the most complex visual stimuli used 
to date have been limited to icon-like images of tools and 
guns (Amodio et al. 2004; see Figure 1).

Unambiguous methods are likewise preferential for ERN 
experiments. Simple, binary forced-choice tasks were a 
regular feature of early ERN research (Renault, Ragot, and 
Lesèvre 1979) and continue to be used to the present. In 
a classic example, Gehring et al. (1993) elicited ERN with 
a speeded letter-based flanker task (Eriksen and Eriksen 
1974; Eriksen 1995; see Figure 1A). This task proved an 
effective way to consistently generate errors even with 
well-trained participants. Flanker tasks and letter stimuli 
continue to be the most common choice for ERN experi-
ments, alongside similar error-prone, automaticity-resist-
ant options such as Stroop and go/no go tasks (see Riesel 
et al. 2013 for a discussion).

To date, the most complex stimuli used in eliciting ERN 
has been icon-like images of tools (Amodio et al. 2004; 
Fleming, Bandy, and Kimble 2010). Such photographs 
involve a level of visual complexity previously unseen in 
the ERN literature. However, they still fall short of revealing 
whether ERN is robust enough to be detected in applied 
tasks. Operations in complex environments, where stim-
uli are complicated by numerous distractive elements, 
might provoke cortical reactions that effectively mask or 
suppress the ERN pattern. In order to test whether detec-
tion of the ERN was feasible in the face of such challenges, 
an applied task in a visually complex environment with 
parity to a known, replicable ERN task needed to be iden-
tified. Ideally, the task would be naturalistic, occurring 
in a context familiar to the participant. Here, we chose a 
motorcycle conspicuity task in the context of driving as 
best fulfilling these requirements.

Figure 1. stimuli previously used in evoking the Ern have been simple and unambiguous. (A) The flanker task used in gehring et al. (1993) 
elicited errors by asking for a binary decision regarding the centre letter in an array. (B) Tools and guns from Amodio and colleagues’ 2004 
shoot/do not shoot racial bias in decision-making study represent the most complex visual stimuli yet used to evoke the Ern.
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letter flanker tasks could unbalance the design, as could 
a substantial difference in cognitive workload between 
tasks. Therefore, as a manipulation check, overall error 
rates and subjective workload via the NASA TLX (Hart and 
Staveland 1988) were collected for each task.

2. Method

2.1. Participants

Twenty-five participants, who were undergraduates at a 
major southeastern university, provided three hours of 
participation in return for class credit. Two participants 
were removed from the study due to hairstyles that would 
not allow the attachment of EEG leads. An additional par-
ticipant was removed due to the occurrence of seasonal 
allergies so severe as to prohibit effective EEG recording. As 
a result, our final sample included 22 participants, 12 males 
and 10 females, who ranged in age from 18 to 59 years 
(mean = 20.00, SD = 10.36).

All participants were required to have 20/20 or cor-
rected to 20/20 vision, a valid driver’s license and no 
self-reported history of neurological disorders. All were 
additionally right-handed. No participant had a motorcy-
cle endorsement on their license or reported any history 
of motorcycle or scooter use. The sample contained a 
mix of novice and experienced drivers; omitting one very 
experienced driver (with 19 years’ experience) the average 
experience reported was 4.5 years.

2.2. Apparatus

An Advanced Brain monitoring (ABm) X-10 nine channel, 
wireless EEG collected data at 256hz from sensors over 
prefrontal, ventral, parietal and occipital regions (sites F3/
F4, C3/C4, Cz/PO, F3-Cz, Fz-C3 and Fz-PO). This unit applied 

a hardware 0.1  Hz high bandpass filter and a 5th order 
low bandpass 100 Hz filter to all data. An ABm External 
Sync Unit (ESU) connected wirelessly to the EEG providing 
time-stamping of data packets and response signals.

Informed consent was administered and collection of 
demographic data was performed using Qualtrics (2013) 
survey software. Experimental data collection and stimuli 
were handled by a single i7 Windows 8 laptop with 8 GB 
of RAm and a 512 GB SSD. To minimise interference, this 
machine was positioned over two meters from the EEG 
collection area. Visual stimuli were presented on a Dell 
LCD monitor at 1024 × 768 resolution (Hancock, Sawyer 
and Stafford 2015). Responses were recorded on a Dell 
QWERTy keyboard with all keys removed except ‘a’ and 
‘apostrophe’, both of which were blacked out, resulting in 
an input device with symmetrically placed left and right 
keys. Tasks were built in ePrime (Schneider, Eschman, and 
Zuccolotto 2002), which presented stimuli, recorded user 
responses, and transmitted response signals via USB-to-
serial adapter to the ESU for time-stamping.

2.3. Stimuli

Two categories of stimuli were built. Letter flanker stimuli 
(Figure 2A) displayed an array of five letters, each an ‘S’ or 
an ‘H’. The centre letter either matched or did not match the 
four outer letters, which were the same. As such, the pos-
sible letter arrays were HHHHH, HHSHH, SSSSS and SSHSS. 
For motorcycle stimuli (Figure 2B), various images of the 
same intersection were presented. In these images, one or 
more of the following elements could appear: pedestrian, 
traffic cone, car, SUV, mail truck and motorcycle. The same 
motorcycle and rider were present in half of all images. 
These images were drawn from a stimuli set previously 
used in the motorcycle conspicuity work of Ledbetter and 
colleagues (2012) and Al-Awar Smither and Torrez (2010).

Figure 2. The present study elicited errors through discrimination tasks in simple and complex stimuli. (A) simple stimuli used in the 
letter flanker task. The target in this trial, an ‘s’, is present in the central position and should be reported. Participants made errors in 7.7% 
of such letter flanker trials. (B) complex stimuli used in the motorcycle conspicuity task. The target in this trial, a motorcycle, is present, 
and should be reported. Participants made errors in 6.2% of such motorcycle conspicuity trials.
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Identified components primarily containing eyeblinks, 
saccades and/or EmG were removed, although in the 
case of any doubt components were retained. Data were 
then imported into ERPLAB, and individual time-stamped 
event markers were assigned to four bins based upon task 
(flanker letter or motorcycle conspicuity) and response 
(correct or incorrect). All data were then segmented into 
400 ms epochs, from −100 ms before the time-stamped 
event to 300 ms after. In each epoch, the mean amplitude 
between 0 and 100 ms was calculated at the Cz electrode, 
relative to a baseline of −50–0  ms. These mean values 
were averaged by bin within each participant and then 
transferred to R 3.1.0 (R Development Core Team, 2008) 
for statistical analysis in a 2(response type: correct, incor-
rect) x 2(task type: flanker, motorcycle) within-participant 
repeated measures ANOVA. Visualisations were also pro-
duced using the ERPLAB pop_gaverager function run 
against all participant data sets and results were submit-
ted to the ERPLAB pop_ploterps function. This output was 
saved as an .eps file, and final adjustments to fonts and the 
legend were made with Adobe Illustrator.

3. Results

3.1. Manipulation check results

As a manipulation check, error rates and subjective work-
load were collected for each task. Across participants, the 
error rate for the flanker letter task (Figure 2A) was 7.7%, 
as compared to 6.2% for the motorcycle detection task 
(Figure 2B). Likewise, across participants the NASA TLX 
composite workload score for the flanker letter task was 
49, and 48 for the motorcycle detection task. The two tasks 
elicited comparable rates of error and subjective workload.

3.2. Graphical results

Visula inspection of aggregate waveform data (Figure 3) 
reveals that error state, but not task type, is clearly dis-
criminable. The negative deflection seen in error trials 
conforms to previously described error related negativity 
(ERN) evoked response potential (ERP) patterns (for exam-
ple, Gehring et al. 2012).

3.3. Statistical results

A significant main effect of response type was shown 
between error and no error trials Wilk’s Lamda = .426, F(3, 
11) = 4.94, p = .02, η2

p = 0.57. No significant main effect of 
task type was present, Wilk’s Lamda = .76, F(3, 11) = 1.14, 
p  =  .38, η2

p  =  0.24. Likewise, no significant interaction 
between task type and response type was evident, Wilk’s 
Lamda = .86, F(3, 11) = .62, p = .62, η2

p = 0.14. These results 

2.4. Task

motorcycle and letter flanker stimuli shared a similar pres-
entation format. Before every trial an asterisk appeared in 
the centre of the screen for 1 s. Participants were instructed 
to orient on this symbol and wait for the stimuli. Flanker 
letter stimuli consisted of an array of five letters and partic-
ipants were trained to press the left key if the centre letter 
was an ‘S’, and the right key if the letter was an ‘H’. In the 
motorcycle conspicuity, task participants were presented 
with a photo of a traffic scene. Participants were trained 
to press the left key if a motorcycle was present, and the 
right key if no motorcycle was present.

2.5. Procedure

After informed consent, participants were asked to surren-
der all electronics, which were held outside the experimen-
tal area. Each participant sat in a chair facing the LCD screen 
while a research assistant fitted the EEG cap and checked 
impedance at all electrode sites. During both training and 
actual trials, no experimenter was in the room, although 
participants could summon one upon request. Participants 
were instructed to follow on-screen instructions and not 
to speak unless necessary. The training portion of the 
experiment guided participants through 16 practice tri-
als of each set of stimuli. This was followed by an oppor-
tunity to ask questions and repeat the training if desired. 
The experimental portion consisted of four blocks of 64 
trials of each task, for a total of 512 trials; 256 on each task 
type. Between blocks, the experimenter entered the room 
and asked the participant to get up and move around, a 
request facilitated by the wireless nature of the X-10 EEG 
device. Upon participant’s return to the seat, the researcher 
again checked impedance levels and made any necessary 
corrections. Participants were then verbally advised that 
they should try to beat their previous speed. On-screen 
instructions before each block further instructed partic-
ipants to go as fast as they were able. Upon completing 
all trials, participants completed a demographic survey 
while the EEG headset was removed by the researcher. 
After disclosure, participants were thanked for their time 
and released.

2.6. Post-processing and Analysis

All EEG data was analysed in mATLAB. (2012) using EEGLAB 
12.0.1.0b (Delorme and makeig 2004) and ERPLAB (Lopez-
Calderon and Luck 2014). Recordings were hand-trimmed 
to include only the experimental tasks. The result was 
submitted to the EEGLAB runica function, an implemen-
tation of Bell and Sejnowski’s (1995) infomax ICA (for a 
more detailed discussion see Delorme and makeig 2004). 
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latitude of stimuli and response. However, there remain 
many cognitive phenomena that require binary response 
to complex images that have found utility in the applied 
domain. For example, the implicit association test (IAT, 
Greenwald, mcGhee, and Schwartz 1998) is used as a part 
of bias training in police departments (Rudman, Ashmore, 
and Gary 2001). We anticipate that other realms will now 
become available for exploration via the ERN assessment 
(e.g. nuclear power control design; Reinerman et al. 2015).

4.1. Next steps

From detecting ERN in a static scene, it appears to be a fea-
sible step to attempt detection in more dynamic environ-
ments. There are, however, some theoretical complications. 
ERN is a subjective, time-locked ERP, and out-of-context 
ERNs that fall outside of experimenters’ expectations seem 
more likely to arise from tasks where the stimuli are con-
stantly changing. In the face of the flow of time, modality 
matters as well, as auditory or tactile stimuli onset can be 
far more easily temporally defined (Hancock et al. 2013). 
Further, in immersive visual stimuli, mere presentation 
does not mean a target is perceptually available; partic-
ipants must look before they can see. This visiomanual 
requirement of a foveal fixation means that, at the least, 
eye tracking will be a bridging requirement for accurate 
time-locked response data in dynamic environments. It 
is however well documented that visual-manual require-
ments, even when met, may not result in perception of a 
target, especially if the observer is engaged in multitasking 
(Strayer, Drews, and Johnston 2003). This ‘looking without 
seeing’ (O’Regan et al. 2000; ) represents both a challenge 
and a potential opportunity, as applied use of the ERN 

indicate that the presence or absence of errors was dis-
criminable in ERN data of both tasks, and furthermore 
that the task type did not significantly impact ability to 
discriminate ERN.

4. Discussion

As hypothesised, the ERN was detectable in the flanker 
letter task (for a visual representation, see Figure 3), which 
represents a successful evocation of this ERP using the 
methods of Gehring et al. (1993). These results represent a 
replication of extant findings using the traditional method 
to elicit ERN. Aggregated trials in which an error was com-
mitted revealed a pronounced negative deflection in activ-
ity measured at the Cz electrode, as compared to trials 
in which no error was committed. The similarity between 
data from this successful replication and that collected 
in the motorcycle detection task is striking. Despite the 
muscular and cognitive ‘noise’ associated with searching 
a more complex image, a clear ERN pattern emerged in 
the latter motorcycle detection (Figure 2). ERN thus joins 
the company of other ERPs shown to be robust in applied 
settings, such as the N2pc, a marker for selective atten-
tion, and the P300, a marker for evaluation of stimuli as 
novel (Woodman and Luck 1999). This important new 
evidence reveals the ERP as a practical neuroergonimic 
(Parasuraman 2003) tool that can be immediately applied 
to a wider spectrum of experimental procedures and 
applied concepts.

Some appropriate caution is well advised. This is 
because our motorcycle detection task was ultimately a 
controlled stimuli set and binary response a controlled 
method. Applied contexts are likely to require more 

Figure 3. inspection reveals a pronounced negative deflection for error trials, as is typical for the error related negativity (Ern) evoked 
response potential (ErP) (as in gehring et al. 2012).
notes: This pattern is similar for both letter and motorcycle stimuli, suggesting that the visual complexity of the latter is not a barrier 
to detection of the Ern ErP. Waveform data are plotted negative-down relative to a 50 ms baseline, while a full 100 ms of preresponse 
activity is shown for evaluative purposes (see Luck 2005).
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allow human-machine systems to be informed quickly of 
perceived errors, and to weight possible ameliorative actions 
accordingly.

Such advanced neuroergonomic applications are only 
hinted at by the present step forward. It is tempting to rel-
egate notions of brain-activity-mediated human–machine 
interaction to the realm of science fiction, but this future is 
approaching. To effectively harness the applied potential 
of ERN, the detection of human error must be moved away 
from artificially simple laboratory conditions in favour of 
the complexity of real-world environments. It is through 
present exploration and iterative implementation of such 
applied ERN detection that this tool may be understood 
and intelligently applied to future critical systems.
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