
Objective: This work assesses the efficacy of the 
“prevalence effect” as a form of cyberattack in human-
automation teaming, using an email task.

Background: Under the prevalence effect, rare 
signals are more difficult to detect, even when tak-
ing into account their proportionally low occurrence. 
This decline represents diminished human capability 
to both detect and respond. As signal probability (SP) 
approaches zero, accuracy exhibits logarithmic decay. 
Cybersecurity, a context in which the environment is 
entirely artificial, provides an opportunity to manufac-
ture conditions enhancing or degrading human perfor-
mance, such as prevalence effects. Email cybersecurity 
prevalence effects have not previously been demon-
strated, nor intentionally manipulated.

Method: The Email Testbed (ET) provides a simula-
tion of a clerical email work involving messages containing 
sensitive personal information. Using the ET, participants 
were presented with 300 email interactions and received 
cyberattacks at rates of either 1%, 5%, or 20%.

Results: Results demonstrated the existence and 
power of prevalence effects in email cybersecurity. 
Attacks delivered at a rate of 1% were significantly 
more likely to succeed, and the overall pattern of accu-
racy across declining SP exhibited logarithmic decay.

Application: These findings suggest a “prevalence 
paradox” within human-machine teams. As automa-
tion reduces attack SP, the human operator becomes 
increasingly likely to fail in detecting and reporting 
attacks that remain. In the cyber realm, the potential 
to artificially inflict this state on adversaries, hacking 
the human operator rather than algorithmic defense, 
is considered. Specific and general information security 
design countermeasures are offered.

Keywords: human-computer interaction, internet, infor-
mation security, messages, signal detection, vigilance, risk, 
antivirus, virus, antimalware, malware, design

Cyberattack represents one of the most destabi-
lizing global effects to the Anthropocene tech-
nical infrastructure that frames our lives today. 
Annual global costs are presently a remarkable 
$500 billion and are projected to quadruple by 
2019 (Moar, 2017). Cyberattack and concomi-
tant cyberdefense efforts are heavily, and in 
many cases even exclusively, vested within 
algorithmic and software realms. However, 
cybersecurity is fundamentally a case of human-
automation teaming and one in which both the 
machine and human are potentially vulnerable. 
Consider the extensive ecosystem of autono-
mous assistance involved in simply checking 
email, an act that presently delivers more mal-
ware than any other digital vector (Symantec, 
2016). Antimalware stops arbitrary code execu-
tion, spam detection diverts social engineering 
attempts, and informational agents choose 
opportune moments to suggest digital hygiene 
(as in Sawyer et al., 2015). Users, so well-
shielded, may encounter unfiltered attacks only 
very rarely. Indeed, such successful algorithmic 
protection may invite “the prevalence effect,” 
in which as signals become less common, they 
become substantially more difficult for humans 
to detect. Such diminished acuity underscores a 
fundamental human inability to detect and 
respond to the extremely rare signals, however 
critical they are (Hancock, 2013; Hancock & 
Warm, 1989; Warm & Jerison, 1984; Wolfe, 
Horowitz, & Kenner, 2005). When machine 
successes become the seeds of human failure, 
what implications to human-machine teaming 
arise from this “prevalence paradox”? If such 
conditions can be elicited by an enemy, might 
this vulnerability of human cognition be weap-
onized (as suggested in Sawyer et al., 2016)?

Prevalence effects in cybersecurity have pre-
viously been experimentally identified only in 
the context of dedicated teams of military 
cyberdefenders working with internet traffic 
“waterfall displays” (Sawyer, Finomore, Funke, 
& Warm, 2014; Sawyer et al., 2016). Such work 
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has joined a number of diverse applied visual 
search scenarios implicating the prevalence 
effect. From baggage and radiological screening 
to decisions to employ lethal force (Schultz, 
Matthews, Warm, & Washburn, 2009; Wolfe  
et al., 2005), when signals of interest are rare, 
compared to nonsignal events, human observers 
are far more likely to simply fail to respond 
(Hancock, 2013). A key arbiter of the effect is 
the ratio of signals compared to total events to be 
evaluated, referred to as “signal probability” 
(SP). Work plotting hundreds of SPs across mil-
lions of trials has revealed that the pattern of 
decrease of probability to respond exhibits not a 
linear change but rather logarithmic decay 
(Mitroff & Biggs, 2014). Practically speaking, 
there exists a logarithmic “tipping point” after 
which performance declines very rapidly. This 
log pattern means that the SP threshold that dif-
ferentiates between robust detection and escalat-
ing failure can be very fine. Interestingly, given 
the opportunity to correct shortfalls, compro-
mised observers reconsider and respond to the 
majority of missed signals (Fleck & Mitroff, 
2007), inviting the possibility that the preva-
lence effect cripples not the ability to detect but 
rather the ability to act. While in tasks such as 
radiological detection of tumors there exists the 
opportunity to check upon initial suppositions, 
perhaps even several times, in many applied 
contexts failures to act in a timely manner are 
tragically uncorrectable.

Real-world signals of critical import are often 
extremely rare, and the rate of their future preva-
lence is also unknown and uncontrollable. This 
helplessness on the part of the observer induces 
the problem characterized as “hours of boredom 
and moments of terror,” or even “months of 
monotony followed by milliseconds of mayhem,” 
a performance profile shared by many domains 
(Hancock, 1997). For example, before an impro-
vised explosive device (IED) is encountered, 
many uneventful deployments in enemy territory 
may occur (Szalma, Schmidt, Teo, & Hancock, 
2014); an unheralded decision about a malicious 
file may come after hours of email work have 
passed. Individuals engaged in such tasks report 
high workload (Finomore, Shaw, Warm, Mat-
thews, & Boles, 2013; Warm, Parasuraman, & 
Matthews, 2008) generally expressed in the  

mental demand and frustration subscales of the 
commonly used NASA TLX (Hart & Staveland, 
1988). Victims of SP depression become far more 
likely to simply fail to respond, allowing mali-
cious information to penetrate their system.

From the perspective of a cyberattacker, the 
potential to elicit such difficulties in an adversary 
is indeed alluring. Indeed, artificial SP depression 
meets the bar for the military concept of “nega-
tion,” in which active measures are taken to 
deceive, disrupt, degrade, deny, or destroy oppos-
ing capabilities (as in Maybury, 2012; see also 
Hancock, 2015). From the perspective of the 
defender, cyberspace has advantages as well. 
Cyberdefense is a context in which the environ-
ment is entirely a human creation and in which 
any sensory representation of the space may be 
tailored to human perception by interface design-
ers. While it is difficult to imagine changing the 
realities surrounding the radiological detection of 
cancer or the chains of coincidence surrounding 
friendly fire, in cyberdefense many more degrees 
of freedom remain available for active interven-
tion. Interestingly, this approach falls short of the 
definition of social engineering in the context of 
information security (as in Anderson, 2008) and 
may constitute a new category of cyberattack. By 
any name, intentional elicitation of SP depression 
seems likely to be a versatile, multicontext attack 
that could be deployed in cyber contexts as diverse 
as masking backdoors in software, disguising 
malicious network traffic, or eliciting users to 
click on email-delivered cyberattacks.

The primacy of email as a digital communi-
cation channel renders it a default target for 
cyberattack. Email is the primary vector for mal-
ware propagation, and the frequency of email-
delivered cyberattack doubled between 2014 
and 2016 alone. Interestingly, in the same period, 
phishing attacks (email attacks inducing indi-
viduals to improperly provide personal informa-
tion) declined to only 37% of their 2014 levels 
(Symantec, 2016). The impact of phishing was 
certainly not in decline. A phishing cyberattack 
sent to John Podesta, the 2016 Clinton presiden-
tial campaign’s chairman, resulted in a stolen 
trove of damaging emails being published 
online. Similar attacks against other Democratic 
National Committee (DNC) personnel, as well 
as against political think tanks, made phishing a 
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feature of 2016 Presidential election news. More 
recently, Google users were targeted by wide-
spread and successful email-delivered phishing 
attacks compromising thousands of accounts 
(Washington Post, 2017). In fact, in 2016, phish-
ing and delivery of malicious code accounted for 
40% of total cyberattack costs to companies 
(Ponemon Institute, 2016). So amidst greater 
impact, why are the absolute numbers of phish-
ing attacks falling? One answer may be found in 
a broad transition toward highly targeted 
“spearphishing” attacks, in which a much 
smaller number of messages are sent, each spe-
cifically tailored to legitimizing the attack to its 
intended target (Symantec, 2016). This familiar-
ity lends spearphishing some of its efficacy, but 
the attack strategy is likely also to be bolstered 
by the prevalence effect.

Are hackers intentionally limiting the number 
of attacks they send, harnessing the power of the 
prevalence effect (wittingly or not) to hack the 
human user? The artificial depression of SP has 
been previously implicated as a potential dimen-
sion of cyberattack (Sawyer et al., 2016). SP of 
cyberattacks is something that both attackers 
and defenders may broadly control—the former 
through the ratio of bona fide attacks to “grey 
signals” (as in Sawyer et al., 2016); the latter 
through automated signal detection (spam fil-
ters, malware detection, etc.) and training 
resources allocated to cyberdefense. As the loga-
rithmic line between only very small decrements 
and abject failure can be very fine, strategies 
could be formulated to push any attacked parties 
“over the edge.” As the frequency of cyberat-
tacks reaching users declines to very low levels, 
victims may become increasingly unlikely to 
detect and respond to remaining threats and 
increasingly more likely to provide hackers with 
compromising information. It is important to 
note that prevalence effects in email are not a 
foregone conclusion. This is because highly 
complex tasks sometimes exhibit minimal or 
nonexistent prevalence effects (cf., Adams & 
Humes, 1963; Lanzetta, Dember, Warm, & 
Berch, 1987). This is especially the case when a 
task is operationally diverse, as is the act of 
checking and responding to email, which 
requires first selecting, reading, and then com-
prehending, before formulating and inputting a 

response. Vigilance effects have been shown to 
be task-type-specific (Warm et al., 2008). There-
fore, while previous efforts have indicated the 
presence of the prevalence effect in the complex 
tasks that military cyberdefenders undertake 
(Sawyer et al., 2014), there is a need to deter-
mine whether such prevalence effects occur in 
the operationally dissimilar task of checking 
email for cyberthreats. Further, understanding of 
the magnitude and pattern of any such effects 
will provide insight that can generalize to other 
tasks involving the serial inspection of mes-
sages, or indeed any sequential set of items (e.g., 
luggage inspection).

In cybersecurity in general, and email cyber-
security in particular, the prevalence effect may 
change user expectations, strategies, and behav-
iors in ways that make it not simply a nuisance 
but a potential attack vector. In a “protected” 
email inbox, where the SP of cyberattacks is 
inherently low, the prevalence effect renders the 
chance of failing to identify a threat to be a prob-
lematically high one. In a spam folder, an envi-
ronment with a high SP of malicious emails, the 
prevalence effect renders the chance of failing to 
identify any given threat as being much lower. 
To complicate matters further, successful attacks 
are generally not immediately, or even necessar-
ily ultimately, revealed to the person or group 
attacked (Sawyer et al., 2016). Even if those 
attacked do become aware, the rate at which suc-
cessfully detected attacks are reported is 
unknown and, likely, actively obfuscated (see 
Hancock, Hancock, & Sawyer, 2015). By defini-
tion, then, the ground truth of threat prevalence 
is never fully specified. This stands in contrast to 
contexts like automotive injury, in which the 
result of failures to detect and respond are tragi-
cally obvious and thus are comparatively well 
documented. Estimates of cyberattack frequency 
in the real world (e.g., see Symantec, 2016) are 
therefore always inherently suspect—generated 
from algorithmic success rates that undoubtedly 
fail to capture the full scale, frequency, and epi-
demiological impact of the problem.

Experimental efforts investigating email 
cybersecurity are a seemingly obvious path to 
obtaining less biased data, but they do face their 
own notable challenges. Sending attack emails 
to personal accounts is understandably fraught 
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with privacy concerns. In the case of the Google 
breach cited previously, this includes the 
potential for litigation toward the involved 
“researcher” (Washington Post, 2017). While 
the indignation of the attacked is understand-
able, the fact remains that actual attackers have, 
comparatively, great freedom to test malware 
delivery strategies. On the defensive side of the 
equation, ethical considerations severely limit 
even the questions that may be asked. Consider 
this, for example: The robustness of Google’s 
cybersecurity has historically led to a low prob-
ability of social engineering attacks in user 
inboxes, and the prevalence effect may have 
contributed to individuals’ inability to detect and 
respond to such email threats. Could Google 
ethically remove protections from a subset of its 
users and observe the outcome effects? Cer-
tainly, any such revelation would result in great 
scrutiny of the company. Even if they could, 
where is the business case for such an action? 
Academic attempts to procure good data by rec-
reating naturalistic cyberattack circumstances 
are likewise often frustrated (see Jagatic, John-
son, Jakobsson, & Menczer, 2007, for an illus-
trative example). However, psychophysical lab-
oratory techniques that tightly control the timing 
of each trial can lack ecological validity. Email 
use occurs in an open-ended timeframe; users 
set their own pace in evaluating each new mes-
sage. As such, lexical decision, vigilant atten-
tion, and other traditional laboratory tasks may 
each fail to capture the richness of the complex, 
multistage process that is the checking and eval-
uation of email. At their worst, such approaches 
may in fact result in iatrogenic effects, periph-
eral to the intended research questions (Han-
cock, 2013).

One potentially rather fruitful path forward is 
to employ simulation, a strategy used in many 
other applied settings in which risk prevents 
ethical experimentation in real-world settings 
(as in Hancock & Sheridan, 2011). The Email 
Testbed (ET) simulates a workplace environ-
ment and is one in which email requests are fre-
quent, homogeneous in terms of content, and 
expected to be replied to promptly. This previ-
ously vetted option provides participants in the 
laboratory the opportunity to interact with a real-
istic but simulated work-email environment in 

the role of an administrator for a fictitious  
company—currently Cog Industries (cognind 
.com). Participants process forms containing 
sensitive personal information. Each incoming 
email must be answered by either downloading 
and filing a .pdf attachment or uploading an 
appropriate .pdf attachment. Attacks can be 
injected into the work schedule at any point and 
in any form. In a previous report, even minimal 
cyberdefense training has been shown to signifi-
cantly boost detection of attack emails (Sawyer 
et al., 2015). Moreover, the success recorded by 
that earlier work further justifies the ET as a 
viable simulation tool for the present inquiry.

Therefore, in the present experiment, a simu-
lated email environment was used to deliver 
cyberattack probes at three levels of SP. In order 
to ascertain the potential existence and form of a 
logarithmic decrement function, “relative accu-
racy” was measured in terms of the proportion 
of reported signals divided by total available sig-
nals in each condition. Three hypotheses were 
advanced. First, we hypothesized that at lower 
SP of email-delivered cyberattacks, participants 
would exhibit lower relative accuracy. Second, 
we hypothesized that among the three levels 
chosen, the pattern of relative accuracy would 
be better fitted by a logarithmic than a linear 
function (cf., Mitroff & Biggs, 2014). Third, we 
hypothesized that workload, as measured by the 
weighted global scale of the NASA TLX (Hart 
& Staveland, 1988), would be lower for indi-
viduals receiving email-delivered cyberattacks 
at a higher SP and higher for individuals receiv-
ing attacks at a lower SP (cf., Finomore et al., 
2013).

MetHod
Participants

A sample of 33 participants was recruited 
from the undergraduate population of the Uni-
versity of Central Florida (UCF) and were pro-
vided extra class credit for their participation. 
All were required to have 20/20 or corrected to 
20/20 vision and to self-report having no neu-
rological impairments. Three were removed for 
failure to complete the experimental protocol, 
resulting in a final gender-balanced sample of 
30 (n = 30). This sample size was established 
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based upon analysis of effect sizes from previ-
ous research (Sawyer et al., 2015).

Apparatus and Stimuli
Informed consent completion and the col-

lection of demographic data were achieved via 
an internet-connected laptop using Qualtrics 
(2015). The recorded measures here were sub-
jective workload via the NASA TLX, age, and 
gender. The ET (as in Sawyer et al., 2015; see 
Figure 1) was used to present all stimuli. Both 
attack and neutral emails came from an exten-
sive corpus of validated messages (Sawyer et 
al., 2015) and were randomly drawn from that 
corpus without replacement. Participants role-
played an administrative position within the  
fictitious Cog Industries and received emails 
either containing or requesting sensitive PDF 
attachments. After opening an email in the 
inbox, participants were able to (a) download 
attachments, (b) reply and upload their own 
attachments, or (c) report an email as suspi-
cious. Upon taking one of these three actions, 
participants returned to the inbox, which then 
presented their next email. Participants there-
fore received and dealt with emails serially.

Legitimate emails were always delivered from 
addresses ending in “cogind.com” and always 
asked participants to either download a PDF file 
or upload an existing file. Attack emails were 
always delivered in the form of either (a) malware 
attack, as a downloadable executable (.exe) file, 
or (2) phishing attack, as a request for a form from 
an unauthorized outside email address ending in a 
.tv domain suffix. As such, attack emails con-
tained multiple highly salient cues as to their 
nature. Attacks were presented at an SP of 1%, 
5%, or 20%, which was a between-participants 
manipulation, balanced between upload and 
download background events. Participants were 
not informed as to the SP level under which they 
performed the task. The primary dependent mea-
sures were (a) accuracy, in terms of attack email 
detect-and-report rate, and (b) response time (RT).

Procedure
For each participant the task was completed in 

a single session. After completing the informed 
consent and the initial demographics, partici-
pants donned noise-canceling headphones. Each 
person received on-screen training with oppor-
tunities to ask questions. First, the functions 

Figure 1. (A) The Email Testbed (ET) was designed to simulate interaction in common online commercial 
webmail interfaces. Participants received emails asking them to upload or download secure documents. 
Cyberattack emails had multiple cues as to their nature—in this phishing email, for example, the inbound 
address, ending in “.tv,” and the body of the email, lacking a signature. Should a participant improperly 
upload and send a document, a miss would be recorded. Should the participant click on the red “Report” 
button, a correct detection would be recorded. Attack emails were received at rates of 1%, 5%, or 20%. 
(B) Each participant addressed 300 such emails. Headphones playing white noise were used to minimize 
distraction by ambient sound and to deliver instructions at the end.
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of each of the buttons in the interface were 
described. The participants were then instructed 
to report any suspicious emails, to supply PDFs 
to those that legitimately requested them from 
within Cog Industries, and to file incoming 
PDFs from other people within the company. A 
training session presented 20 example emails, 
10 of which were attacks—five “.exe” malware, 
five phishing. Participants were required to 
achieve an 80% accuracy rate within the train-
ing set, and all of our samples were successful 
in this regard. Upon beginning the main experi-
mental task, participants moved at a pace of their 
own choosing through 300 emails, taking as 
much time as they needed. We drew at random 
1%, 5%, or 20% of those emails from a corpus 
of attack emails. As this arrangement resulted 
in an odd number of emails for the 1% and 
5% conditions, alternating participants received 
either more malware attacks or more phishing 
attacks, so as to achieve a counterbalance in the 
total participant population. Upon the comple-
tion of all emails, participants received an audio 
message through their headphones as well as an 
email through the ET interface instructing them 
that the experiment was at an end. They then 
completed exit demographics and subjective 
workload scales. They were then debriefed by 
the research associate and left the experimenta-
tion facility. This research was approved by the 
Institutional Review Board at The University of 
Central Florida. Informed consent was obtained 
from each participant.

ReSultS
Data from 30 participants (n = 30) were 

included in the present analysis. Average time to 
complete the experimental task was 61.02 min-
utes (SD = 20.81 minutes). Prevalence effects are 
not themselves a product of fatigue (see Green 
& Swets, 1966), but we did confirm our email 
task itself was not unduly fatiguing by assess-
ing the impact of total completion time upon 
accuracy rate, F(1, 29) = 0.39, p = .94. Result-
ing data were initially submitted to a mixed 
MANOVA to assess the impact upon accuracy 
and RT of 2 Attack Types (upload, download; 
within) × 3 SP (1%, 5%, and 20%; between) × 2 
Genders (male, female). This design yielded no 
significant interaction or main effect of gender 

or attack type (the within-participant factor), 
and so a between-participants MANOVA was 
used for the analysis subsequently reported. 
False alarms, as in some previous investigations 
(Wolfe et al., 2005), occurred less than 1% of 
the time, and so signal detection analyses were 
not performed on the present dataset.

The present, between-participant, analysis 
tested the impact upon accuracy, RT, and the 
NASA TLX Composite Score (TLX; Hart & 
Staveland, 1988) of three SP levels (1%, 5%, and 
20%). A significant main effect of SP was detected; 
Wilks’ Lambda = .05, F(6, 52) = 146.77, p = .02, 
η2

p = .27. Between-participants ANOVA results 
revealed the effect to be significant as related to 
both variables: response accuracy, F(2, 27) = 4.22, 
p = .03, η2

p = .24, and RT, F(2, 27) = 4.53, p = .02, 
η2

p = .25 (see Figure 2). These data indicated that, 
when the prevalence of attacks was raised, RT 
decreased while accuracy increased. Results addi-
tionally show that the lowest SP led to the highest 
levels of RT and lowest levels of accuracy. No sig-
nificant effect on TLX scores was observed, F(2, 
27) = 2.08, p = .14, η2

p = .13, although nonsignifi-
cant trends (at SP 1% M = 23.88, SD = 13.21; at 
SP 5% M = 34.76, SD = 19.95; and at SP 20%  

Figure 2. In email-delivered cyberattacks, a prevalence 
effect is seen. Despite taking more time (striped bars) 
in the self-paced ET task, participants in the low signal 
probability (SP) 1% condition detected and reported 
attack emails (dotted bars) at a significantly lower rate. 
Actual attack rates in commercial webmail systems are 
well below 1%, and the better the software, the lower 
that number. This suggests a “prevalence paradox,” in 
which better software catches more attacks but leaves 
the human with an ever-smaller chance of detecting 
those that remain.
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M = 37.18, SD = 12.26) actually show higher SPs 
tended to be paired with higher workload.

Finally, aggregate data from the main effects 
of SP on accuracy were tested for both linear and 
logarithmic fit. Logarithmic fit (r2 = .80) proved 
to be superior to linear fit (r2 = .45). As Figure 3 
clearly illustrates, this implies that the underly-
ing pattern of the data in fact showed one of 
logarithmic decay as SP approached zero.

diScuSSion
The present data show, for the first time, the 

prevalence effect in email-delivered cyberat-
tacks. In line with our first hypothesis, lower 
SP of email-delivered cyberattacks did result in 
lower relative accuracy in reporting malicious 
emails. In support of our second hypothesis, 
the pattern of response accuracy among the 
three SP levels chosen was indeed better fit 
by a logarithmic than a linear function, further 
confirming that the prevalence effect is at work 
in the present context (as in Mitroff & Biggs, 
2014). The ET and accompanying email corpus 
provided a real-world task and attack types, 
providing external validity that was further rein-
forced by the match between our findings and 
data collected from actual cyberattacks (Syman-
tec, 2016). Email-delivered cyberattacks can 
therefore join a rich body of other contexts in 
which prevalence effects and vigilance degrade 
human performance, including medical imag-
ing, air traffic control, friendly fire incidents, 
and IED detection, to name but a few. Further, 

our findings suggest that the sizable literature on 
both vigilance and the prevalence effect can be 
brought to bear successfully upon this emerging 
and crucial domain.

Contrary to our third hypothesis, subjective 
workload showed no significant effect of SP 
level. Nonsignificant trends were in the direc-
tion of greater workload for greater SP condi-
tions. It is worth noting that the present study, in 
common with a number of other studies investi-
gating prevalence effects, was a self-paced task 
such that movement rate through the task was 
determined by the participants themselves. The 
lack of pattern regarding workload may suggest 
that when SP manipulations are dissociated from 
the rate at which events are presented, workload 
itself becomes dissociated from performance 
(Hancock, 1996, 2017). Note that, at lower lev-
els of SP, variance increases markedly even as 
performance declines. This pattern would render 
self-assessment of performance nearly impossi-
ble, at the individual metacognitive as well as 
the team performance levels. It is possible the 
workload profile of email in general, or our task 
specifically, may be quite muted (and see Green-
lee et al., 2016; Young, Brookhuis, Wickens, & 
Hancock, 2015). Of course, our email-delivered 
cyberattacks were quite salient, and the email 
corpus used was presented serially, a pattern of 
email communication common in clerical work-
place settings where filing and providing docu-
ments may represent the main function of an 
individual worker. This pattern differs markedly 
from email workflow in academic, managerial, 
or many other workplace settings where email is 
more tertiary, strategic prioritization is more 
necessary, and uninterrupted stretches of 300 
emails are hopefully rare. In a task that provided 
less salient signals, constrained event rate, or 
allowed participants to engage with emails in the 
order of their choosing, different results would 
be expected in terms of workload and, indeed, 
potentially in terms of all study dependent vari-
ables. Further research is certainly needed.

The broad idea substantiated here, that in 
human-machine teaming, cyberattacks may tar-
get human cognitive vulnerability rather than 
algorithmic shortfalls, has significant implica-
tions. To use the analogy of poker, the field of 
cybersecurity has been playing the cards, but the 

Figure 3. The logarithmic fit for these data proves 
superior to linear fit, suggesting that the pattern 
found is one of logarithmic decay of accuracy as 
signal probability (SP) approaches zero. This is 
consistent with patterns seen in past research of the 
prevalence effect (Mitroff & Biggs, 2014).
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possibility now exists to directly play the play-
ers. To be clear, this vector of attack extends 
beyond social engineering (as in Anderson, 
2008) to exploitation of fundamental shortcom-
ings of human information processing. Indeed, 
Symantec (2016) provides circumstantial evi-
dence that attackers may already be strategically 
reducing SP, and thereby enjoying enhanced 
cyberattack efficacy (Ponemon Institute, 2016). 
While these parties may not be aware of the cog-
nitive underpinnings of their success, ethically 
unrestrained A-B testing on the large sample 
sizes would readily reveal this pattern. Other 
potential vectors of human-mediated digital 
attack certainly exist; the basic and applied  
psychological literature is rich with effects 
revealing the limitations of human cognition. 
Just as the visual perception community has 
painstakingly catalogued hundreds of visual 
illusions and the advertising industry catalogued 
manipulations of decision-making, so now must 
cyberdefense embark upon understanding which 
features of human cognition may be repurposed 
as attacks or to buoy defense. The solution to 
such vulnerabilities would, at first glance, seem 
to be more rigorous algorithmic protection.

In considering protections for human opera-
tors, the authors found a paradoxical quandary: 
The SP manipulation in the present experiment 
can be as easily couched in automated protection 
as it could be in cyberattack strategy. Success on 
the part of algorithmic defenses would directly 
engender less successful, prevalence-effect 
influenced human partners. We have coined the 
term “prevalence paradox” to describe the coun-
terintuitive situation under which increasingly 
effective protective autonomy leads to increas-
ingly few critical signals and so an ever-growing 
likelihood that human operators will miss the 
signals that do remain. To be clear, this in no 
way means the user should disable their algo-
rithmic protections. In absolute terms, such 
machine detection enhances overall perfor-
mance of the human-machine system. Still, in 
any teaming situation, success of one teammate 
at the expense of another is an obvious problem, 
fraught with questions of blame. In the present 
environment of email cyberattack, the penetration 
of even a single attack email into a user’s inbox 
can be seen by that user as a direct indictment of 

the efficacy of protective systems (spam filters, 
etc.), regardless of the absolute reality of the 
situation. A brief thought experiment reveals 
that the prevalence paradox is therefore not only 
a performance issue but also tightly coupled 
with the emergent property of trust (Hancock  
et al., 2011). Prevalence paradox effects may, for 
example, be strong arbiters of usage, as levels of 
trust determine levels of engagement spanning 
from overreliance to neglect (Lee & See, 2004). 
While there is presently no work that explicitly 
explores this link among prevalence effects, 
teaming with automation, and trust, there is evi-
dence that such a relationship does exist. Work 
linking automation to trust (e.g., Molloy & Para-
suraman, 1996; Parasuraman & Riley, 1997) 
suggests that monitoring of and by autonomous 
systems can lead to miscalibration of trust and 
resultant suboptimal performance or even aban-
donment altogether of a system that might other-
wise provide benefit. Further, previous literature 
clearly shows that users who distrust or over-
trust tools are subject to a range of vulnerabili-
ties (Parasuraman & Riley, 1997), including 
mistrust and miscalibrated trust. Prevalence 
paradoxes therefore offer foundational points 
upon which to build deception and exert influ-
ence, sabotaging trust relationships within the 
human-machine teaming that is so crucial to 
cyberdefense.

It is also important to consider the fact that 
the prevalence paradox certainly exists in con-
texts beyond cyberdefense. More generally 
operationalized, this construct describes any sit-
uation in which an attempt to improve perfor-
mance by the interception of threats has the 
unintended effect of reducing the probability of 
signals to the point of inducing a prevalence 
effect. Therefore, the construct’s impact will 
very likely extend to contexts beyond cyberse-
curity, and even human-machine integration, to 
affect even human-human teaming. Consider 
how highly reliable individuals may uninten-
tionally intercept enough signals within a con-
text to expose their human teammates to preva-
lence effects. In medical settings, certain types 
of common medical or iatrogenic issues might 
be intercepted with great efficiency by skilled 
nursing staff. Physicians, so protected from the 
base rate of these issues, might be at a great  
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disadvantage in their own detection. Pilots of 
commercial aircraft might be guided by autono-
mous systems successfully minimizing certain 
error conditions. The base rate of such incidents 
may then drop below the ability of pilots to 
detect and respond. Finally, consider drivers 
protected by lane-centering technologies that 
apply small corrections to steering to keep the 
vehicle centered in the lane. Users might well 
find that drift from the lane becomes so rare that 
they are unable to detect exceptions in a timely 
manner. Teaming in these examples involves 
humans and machines, or humans and humans. 
The common thread is one of robust assistance 
that reduces but does not completely eliminate 
threats and leads to later prevalence effects for 
human stakeholders. Excellent medical staff are 
not infallible, nor is aircraft automation, nor is 
ground vehicle automation, but the closer they 
come to perfection, the more likely they are to 
elicit a failure downstream. Trust is at risk in 
every context we reference here, as it is in the 
present cybersecurity context. Physicians’ trust 
in their staff, pilots’ trust in their autopilot, and 
drivers’ trust in their cars’ advanced safety tech-
nology all directly impact their role in teaming. 
Here, distrust might cause individuals to discon-
tinue use of a resource that would otherwise pro-
tect them. The prevalence paradox, therefore, 
may point to a more universal quandary: How is 
it possible to provide excellent protection while 
still allowing those you protect an unhindered 
opportunity to protect themselves?

What design interventions might defuse the 
prevalence paradox? While the present results 
provide no explicit solution, exploring previous 
inquiries reveals some paths forward. This issue, 
its consequences in large-scale cyberdefense, 
and possibilities for so-called “prevalence 
attacks” have been previously discussed (Saw-
yer et al., 2015). The present work is experimen-
tally grounded in the psychological phenomenon 
of vigilance and the associated vigilance decre-
ment (Warm & Jerison, 1984), of which the 
prevalence effect, referenced here, is one ele-
ment. In repetitive observations in search of rare 
signals with little control over the occurrence of 
the next target, it is common to see a decrement 
in detection rate. Such vigilance decrements are 
strongly affected by SP via “event rate,” the 

speed at which new candidate stimuli are pre-
sented. Experimental efforts evaluating tasks of 
this nature frequently forego an analysis of over-
all rate of events and rather focus upon the RT of 
participants to individual events (as in Wolfe  
et al., 2005, 2007). This, in part, is because such 
RTs provide a window into participants’ strate-
gies. For example, speed/accuracy tradeoffs can 
exist in which lower accuracy is associated with 
moving through material at a faster pace (as in 
Fleck & Mitroff, 2007). The question as to 
whether moving through trials too quickly is a 
basis for the prevalence effect has been asked, 
and encouraging longer consideration before 
rendering a decision does have an impact in 
terms of reducing missed signals (Wolfe et al., 
2007). From the design of user experience (UX) 
standpoint, enforcing a certain time for scruti-
nizing an incoming email is unlikely to be 
embraced by end-users, but artful renderings 
might find an audience. Of course, just as such 
microstrategies may have efficacy, event rate 
may potentially be influenced by altering the 
macrostructure of demand in the workplace (see 
Sawyer et al., 2016). The design of methods to 
help better calibrate overall staff levels to aggre-
gate threat levels over time may thus be a fruitful 
path forward.

Event rate is not the only potential point of 
intervention. In considering the levels of SP cho-
sen for the present experiment, it became obvi-
ous that further exploration at lower SP levels 
may reveal more granular patterns and so expose 
novel countermeasures. It is also possible the 
different types of attacks have unique signatures 
of performance decay, and efforts to understand 
these patterns could lead to better strategies in 
cyberdefense. For example, if some forms of 
phishing attacks become difficult to respond to 
at higher SP than others, these could be more 
aggressively filtered, trading higher false posi-
tives for a better detection rate. SP inflation 
through the injection of “pseudo-signals,” attack 
emails that deliver payloads for training, is a 
strategy already being attempted as a cyberde-
fense strategy. Such efforts and products seem to 
focus on training alone without an apparent 
understanding of the cognitive underpinnings 
described here. Attempts of this nature, for 
example, the random intermittent injection of 
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warning messages, run afoul of the exceptional 
ability of humans to categorize the threats and 
nonthreats in their environment. Finding a 
“training email” tells a user nothing about a real 
threat in the environment, and as such that user 
is unlikely to change his or her criterion. Send-
ing real threats, of course, is a very problematic 
strategy. One possible, although untested, mid-
dle ground would be “defanging” of existing 
attacks, by stripping payloads and links to 
attackers. These could be as simplistic as mes-
sages regarding thwarted attacks, but such 
defanged attacks might also be reserved and 
reinjected, even to other users of the system. In 
this role, defanged injections might serve a more 
ecologically valid role, representing the true SP 
of attacks in the email ecosystem and suggesting 
better calibrated digital hygiene (Sawyer et al., 
2015). Indeed, the line here is to find one, and 
once users begin thinking of these attacks as 
“not real,” their efficacy would dissipate.

It is important to recall the unique advantages 
for defense of the entirely synthetic environment 
of cyber. The strategies we discuss might prove 
impractical in settings such as radiology, where 
there is real risk of overlaying a fake signal on 
real information, such as the shadow of an unde-
tected tumor (see Wolfe et al., 2007). The serial 
nature of email presentation largely eliminates 
the latter concern but does not eliminate the 
problem that such false flag attacks on the part 
of the email system might themselves have seri-
ous effects on trust or user understanding of the 
probability of actual attacks. Likewise, a strat-
egy suggested by Wolfe and colleagues (2007) 
in which observers might be “retrained” by 
exposure to high SP epochs of search activity 
might have real utility in email. Negative effects 
may be magnified during rapid digital “move-
ment” between high- and low-SP environments, 
as humans require time to adapt to changed lev-
els of SP (Wolfe et al., 2007). Design to encour-
age advantageous transitions is worth investiga-
tion. The “defanged” emails collected by auto-
mated systems might be more strategically 
deployed under such a strategy. Moreover,  
such a cache of high-SP targets already exists in 
spam folders, and so by enforcing spam reviews 
on a regular schedule, some benefit might be 
gained. Finally, state detection solutions may 

allow for greater transparency and communica-
tion between human and machine team mem-
bers. Research monitoring visual behavior and 
physical interaction with systems in tandem has 
progressed greatly in recent years (see Lee et al., 
2017, for a surface transportation example with 
potential application for other interfaces) and 
might allow state detection solutions in many 
varieties of interface, including those in cyberde-
fense. Likewise, electroencephalographic evoked 
response potentials (ERPs) for error detection in 
combination with the email injection strategies 
noted above might shed light on operators’ abil-
ity to detect errors or signals (as in Sawyer, Kar-
wowski, Xanthopoulos, & Hancock, 2017), then 
allow for immediate modulation of the cyber 
environment. Extant inquiry contains many 
more potential ameliorative strategies, each of 
which must be redesigned and evaluated in the 
specific context of email cyberdefense. Signifi-
cant rewards await the individual, commercial 
entity, or nation-state finding workable solu-
tions.

It might seem prudent to remove operators 
entirely from the dangers of email cyberattack, 
perhaps through the development of putatively 
“perfect” algorithmic cyberdefense. For advo-
cates of removing the human from the loop of 
control, a number of cautions should be empha-
sized. First, it is important to remember that 
human cognition is, as of this writing, the supe-
rior general-purpose signal detector in most 
human-machine team contexts. While machines 
are widely acknowledged to be superior at cer-
tain types of problems (see De Winter & Han-
cock, 2015), humans have their own strengths. 
Indeed, humans and machine learning may 
encounter different difficulties in the same 
search. Situations where both machines and 
humans struggle with the complications of the 
prevalence effect may be well represented 
through signal detection theory (SDT) tradeoffs 
(see Warm & Jerison, 1984). This balance 
between false alarms and misses has not been 
perfectly addressed in human biology, as we have 
shown, nor in any known biology (see Bond & 
Kamil, 2002, for examples in other organisms), 
but through the prolonged actions of evolution, it 
may be close to optimally addressed. Any imag-
ined “perfect” algorithmic cyberdefense system 
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would need to restrike this balance in a way not 
only superseding these existing biological solu-
tions but in agreement with their edge cases. 
Indeed, in situations where prevalence and vigi-
lance effects are well-controlled, the flexible 
cognition of humans is well-suited to monitor the 
unpredictable edge cases of autonomy.

Consider, for example, the issue of machine 
false-positives that result in legitimate data 
caught in the digital dragnet of a spam folder or 
less user-accessible location. Here, it is impor-
tant to remember a second point: that human 
operators are fully willing to deceive and disable 
automation in order to achieve their own goals. 
Wholesale blocking of archive files by many 
email systems, a well-intentioned removal of the 
human from the loop in a cybersecurity context, 
has resulted in diverse renaming schemes (in 
which the suffix of a well-understood archive 
type is replaced; i.e., .zip to .piz). This work-
around nicely solves the user problem, at the 
cost of complicating security in a fashion that 
undermines algorithmic cybersecurity and ulti-
mately works to the advantage of attackers. In 
general, human users have the cognitive ability 
and environmental flexibility to become the 
final arbiter of the legitimacy of any digital mes-
sage. There is good reason to give them such 
autonomy: Human signal detection is often gen-
eralized enough to identify the failures of 
machine signal detection, while the reverse is 
seldom true (Parasuraman, Masalonis, & Han-
cock, 2000). This asymmetry necessitates team-
ing, in which humans and machines alike assist 
with the shortcomings of the other, a state that 
must arise from careful design. Before demon-
izing operators that turn against their digital sys-
tems, it is important to remember that such 
behavior is a sign of a breakdown of necessary 
human-machine teaming.

Perhaps most fundamental, however, is not to 
degenerate into narratives concerning weak 
humans, malevolent machines, blame, and retri-
bution. The intent, after all, is for user and 
machine to be on the same team. What is vitally 
needed now is investment in human-centered 
understanding of human-machine symbiosis 
toward actionable improvements. Cybersecurity 
is an exemplary case of such human-automation 
teaming. Despite this truth, cyberattack and  

concomitant cyberdefense is presently heavily, 
and in many cases even exclusively, vested in 
algorithmic and software realms. Yet here, we 
protest that these issues involve at least a major, 
if not a majority concern, with the human dimen-
sion. In this work, we have raised and demon-
strated a prevalence effect in this domain and fur-
ther identified a complication of this effect, the 
prevalence paradox. We believe there to be strong 
and productive links between these constructs and 
the traditional human factors realm of vigilance 
and sustained attention (Hancock, 2013) as well as 
other elements of human factors science (e.g., per-
ception, decision-making, automation-mediation, 
etc.). The time to adapt and apply this plentitude of 
hard-won understanding is now, as the status quo 
of largely algorithmic defense investment is fail-
ing. Forces of cyberattack presently outstrip forces 
of cyberdefense (Gutzwiller, Fugate, Sawyer, & 
Hancock, 2015). Breaches of increasingly prodi-
gious proportion (Ponemon Institute, 2016; 
Symantec, 2016) are becoming daily events with 
mounting impact. Human knowledge, dispropor-
tionately in the hands of the few, is now changing 
hands in quantities that must surely represent the 
greatest illicit exchange of information in human 
history. A defensive solution, we submit, can only 
come from expanded and continued investment in 
understanding the vital human factor of cyberse-
curity.
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key PointS
 • The prevalence effect, here demonstrated for the 

first time in email cybersecurity, refers to rare sig-
nals in an environment being substantially more 
difficult to detect, even taking into account their 
low occurrence.

 • Cyberattackers may be intentionally inflicting 
prevalence effects by delivering attacks at a lower 
per-user rate. Such hacking of the human may 
explain why email phishing attacks have declined 
in number while growing in impact.

 • Under the prevalence paradox, as helpful automa-
tion reduces the number of attacks, human operators 
are increasingly likely to fail to detect and report 
remaining attacks.

 • The prevalence paradox has strong implications 
for human-machine teaming and trust.

 • We suggest that efforts to remove the human from 
the loop are likely ill-fated and instead suggest 
design interventions to mitigate prevalence effects 
and strengthen human-machine teaming.
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