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This panel discussion is third in a series examining the educational challenges facing future human factors and
ergonomics professionals. The past two panels have focused on training of technical skills in data science,
machine learning, and artificial intelligence to human factors students. This panel discussion expands on
these topics and argues for a need of new and broader training curricula that include ethics for responsible
development of AI-based systems that will touch lives of everybody and have widespread societal impacts.

INTRODUCTION

At the past two Human Factors and Ergonomics Society
(HFES) Annual Meetings we have presented panel discussions
on the educational needs of the future human factors and er-
gonomics (HF/E) workforce, focusing on educational gaps in
the areas of data science, machine learning (ML), and artificial
intelligence (AI) (Hannon et al., 2020, 2019). It appears that
these panels have provided some impetus to re-examine the ed-
ucation of HF/E professionals more broadly as well (Zhang &
Chignell, in press). However, as typically is the case in HF/E,
technological advances far outpace the ability of the discipline
to provide essential input to human-centered development of
systems. This is particularly noticeable, noteworthy, and indeed
critical with AI.

In our past panels we have contrasted the “1st generation”
(cockpit) automation with AI/ML-based "2nd generation" au-
tomation, focusing on the opaqueness of the latter and the chal-
lenges to human-automation interaction (HAI) it poses. This
focus may be too narrow. The biggest problem may not be in
the “box” after all, whether it is black or any other color, but that
of scale. If old forms of automation were singular devices (e.g.,
an autopilot) or vehicles (e.g., a Mars rover), new automation
is akin to a “Humongous Fungus” (armillaria ostoyae), cover-
ing a huge “area” in terms of impacted people and their myriad
activities with networked devices and vast amounts of user data
collected. Hence, the human factors challenge is less that of
HAI in different tasks, but more about the role of humans in the
evolving and interconnected technological society in general.

The HFES mission statement already is human-centered:
designing for people, and designing systems that work for hu-
mans. HFES has members who focus on micro-cognition and
the details of how people extract information from displays.
Other members focus on macro-cognition and sociotechncial
systems, where the focus is often on teams and organizations. A
particular challenge with ubiquitous AI is that it exerts influence
simultaneously at the micro and macro levels. This panel will
extend the discussion to the direction of what is the ultimate
human purpose. Is it just that of a consumer, something to be
freed of all effort, and perhaps even all initiative? Or should
technology be designed to support continuous human develop-
ment? What do these challenges mean for the development of
HF/E curricula and the education of future HF/E professionals?

PANELISTS’ POSITIONS

Katherine Darveau, GE Aviation and Tufts University.
The intersection of my experiences in industry and academia
show several potential benefits to integrating AI, Human Fac-
tors, and domain expertise. Collaboration between industry and
academia provides a mutual benefit to students, universities, and
employers. Sharing of data, data collection methodologies, and
reporting interfaces gives HF/E students the opportunity to set
up an AI problem in the context of a real-world scenario, that
may contain a broad array of HF/E challenges that are not well
understood by the industry. A critical benefit of HF/E integra-
tion into AI is investigating and understanding the current state
limitations of data collection and implications for a potentially
automated system.

While standard human-in-the-loop systems require human
intervention or oversight to prevent improper automated deci-
sion making, less focus is placed on the role of humans (e.g.,
domain subject matter experts) in the design of the system and
modeling approaches. Inherent to a HF/E curricula are human-
centered, investigative, and causal approaches to problem solv-
ing, which may be lacking in the majority of traditional AI ap-
plications. Therefore, there is a clear benefit to a collaboration
among HF/E professionals, domain experts, and data scientists
to improve AI capability and find the right balance of human-
machine teaming that addresses meets both performance and
ethics goals. It may be worthwhile to demonstrate the effec-
tiveness of this collaboration at the college level, with industry
partnerships and cross-departmental projects.

My dissertation seeks to find the right balance of human-
machine teaming for safety event classification that achieves
desired performance. In so many examples of AI with human
oversight, there are trade-offs between level of human oversight
and performance that need to be evaluated based on outcome
goals, available resources, and other business-related factors.
The key is to iteratively test and improve our decision tools
to determine where and why AI may not be as successful as
a human. In some cases, automation can not only expedite the
process but may outperform humans due to the nature of the
task, whether mundane/monotonous or of high cognitive load.
In high-risk industries, the “right” balance should heavily pri-
oritize the probability and severity associated with failure. An
example from the medical industry is the use of clinical diag-
nostic support system (CDSSs) that help to diagnose a patient’s
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illness and/or assist in making decisions about treatment plans.
In many cases, CDSSs are used to make an initial recommen-
dation but the clinician proves a final evaluation and decision
(Anooj, 2012; Castaneda et al., 2015; Hasan & Padman, 2006;
Scheitel et al., 2017; Walczak, 2005; Walczak, Pofahl, & Scor-
pio, 2003). In the aviation industry, human-machine teaming
for operational and safety event classification has proven more
successful than automated methods alone (Bluvband & Porot-
sky, 2012; Labarga & Friedman, 2018).

A major limitation of the success of AI is the quality of the
source data, which can vary significantly if entered by humans.
While some data quality issues can be counteracted by the de-
velopment of an effective AI system or incorporation of human
intervention, these approaches may not guarantee a perfectly
successful system. It is beneficial for both system and user (per-
son who enters the data) to engage in continuous learning. The
concept of “usable” or user-interactive machine learning yields
continuous development for both the human and the automated
system. In a traditional model, iterative system improvements
require someone well-versed in machine learning to interpret
end user behavior and tweak model parameters. A more de-
sirable end state is to eliminate the need for a ML expert and
allow the system to directly learn from the user, and vice versa.
The concept of usable machine learning provides an interactive
process that allows user to clarify or correct data inputs, provide
additional detail as requested, and/or approve or deny an AI pre-
diction. In addition to influencing user behavior to yield better
data quality, the user’s domain knowledge is also improving the
predictive capability of the system (Amershi, Cakmak, Knox,
& Kulesza, 2014).

James Intriligator, Tufts University. Henry Ford fa-
mously quipped “Any customer can have a car painted any color
that he wants—so long as it’s black.” Today, we recount the
Ford tale and laugh about the early days of design and the lack
of customer/user/human focus. Happily, we now have technolo-
gies and infrastructures that let us cater to customer desires.
We can research and understand the specific desires of our cus-
tomers (or users) and design to meet their desires. In HF/E this
approach is referred to as “human-centered design” (HCD).

We teach our students to put the user at the center of design:
to study them, empathize with them, interview them, understand
them and their roles, tasks, relationships and journeys. And,
from this design research, we create a detailed user persona.
This persona then guides all subsequent design. We know that
this approach works well, but HCD also has potential dangers:
What if we get the wrong persona? What if we leave out or
exclude another important persona? What if our design inad-
vertently makes life worse for another persona?

Ending up with the wrong color car is not great but nar-
rowly focused HCD can lead to far more serious errors: loan
decision systems with racial biases or face recognition sys-
tems (trained only Caucasian faces) that incorrectly recognize
non-white individuals. Often such failures (found in numer-
ous products, systems, or processes) began at the earliest stages
of research and design. As we move into a future of mass-
customization, mass-use, and digital artifacts, such problems
will compound and appear more frequently and with more dev-

astating impacts.
We can help mitigate such design failures by using the “per-

sona multiplication method” (PMM). Begin with standard de-
sign research to create a human-centered user persona but do
not stop there. Instead, pause, reflect, and examine the per-
sona with an eye towards multiplying it. Look at the persona
and ask, “What if I varied some of the dimensions—the gender,
age, race, or class?” and “What personae will be excluded if we
proceed with only this persona?” and “What disadvantaged or
marginalized groups would be excluded, harmed, or further dis-
advantaged, if we proceed with only this one persona?” In many
cases, we might decide to include multiple (or wider) personae
in our design process.

PMM helps identify and avoid the dangers of narrow HCD
and we can expand our persona sets to include other personae
that might have been missed, excluded, or disadvantaged. For
example, imagine designing an ML-based handwriting recogni-
tion system. As we consider gathering training data, we might
realize that our persona was (implicitly or explicitly) a right-
handed individual. Using only this persona will exclude mil-
lions of left-handers. Thus the persona needs to be multiplied
(or at least expanded) to avoid excluding important groups. The
same approach should be applied across a wide range of impor-
tant spaces. We might design different user interfaces that will
not leave behind the visually impaired, the non-native speak-
ers, or older individuals. In the realm of machine learning we
will begin by choosing training-sets that span the wider range
of personae who might be using (or processed by) the system.

HCD has served designers well, but, as products and sys-
tems become more customizable and more widely used, we
need to move away from the narrow persona that HCD advo-
cates. We must examine the multidimensional realm of possible
personae and ask whether our persona/design might be leaving
people behind by inadvertently creating an advantage for some
and excluding or disadvantaging others. This step will allow
us to redirect our design efforts to create more ethical products,
systems, and processes.

John D. Lee, University of Wisconsin–Madison. The
provocatively titled book, “Weapons of Math Destruction,” de-
scribes damage machine learning algorithms can do when de-
ployed at scale (O’Neil, 2016). Their destructive capacity stems
from their scale, opaqueness, and potential for societal dam-
age. One notorious example is the COMPAS system. It uses
information about convicted criminals to predict recidivism and
guide parole decisions (Dressel & Farid, 2018). Such systems
can profoundly affect the lives of millions of people. Because
these systems often suffer from racial and gender biases, they
can inflict societal-scale damage.

The scale considered in “Weapons of Math Destruction”
is the breadth of influence, defined by the number of people
affected. Another dimension of scale concerns the depth of in-
fluence. Here depth is how deeply the algorithms affect people’s
lives, attitudes, and thinking. One avenue for deep influence of
machine learning is through smartphones. Smartphones have
become ubiquitous with 95% of teens report having access and
45% using constantly (Firth et al., 2019). Smartphones are used
frequently: an average of 233 minutes per day, with 86 pickups,
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and 90 notifications (Ellis, Davidson, Shaw, & Geyer, 2019).
These interactions can produce acute and chronic changes in
cognition, such as diminished ability for sustained concentra-
tion, and even changes brain structure (Firth et al., 2019).

Algorithms embedded in smartphones deepen this influ-
ence by selecting news and mediating social interactions: 62%
of US adults received news through social media (Carlson,
2018). Algorithms presenting this news are tuned to engage
rather than educate people and one consequence is polariza-
tion and the spread of misinformation (Del Vicario et al., 2016).
These algorithms also personalize advertising to incite purchas-
ing, sometimes to excess. One explanation for this is that rein-
forcement learning algorithms can maximize their cost function
by either meeting people’s needs or by changing those needs
(Russell, 2019). Increasing polarization and excessive purchas-
ing may reflect algorithms guiding people to serve the algo-
rithm, rather than the algorithms serving people. The power of
algorithms to create deeply personalized interactions can either
protect us from our weakness or prey on them (Zuboff, 2019).

What can be done? Human factors practitioners can be-
come familiar with algorithmic bias and methods to assess fair-
ness (Albarghouthi & Vinitsky, 2019). No single fairness met-
ric addresses algorithmic bias: their application requires under-
standing the context of use, which human factors practitioners
are well-positioned to address. Human factors practitioners also
understand the principles of cognitive psychology, choice archi-
tecture, and persuasive computing that deepen algorithm influ-
ence (Eyal, 2014; Thaler & Sunstein, 2008). As advocates for
people interacting with AI at a broad and deep scale, we can
guide AI design to serve people rather than treat their behavior
as raw material to be mined and manipulated (Zuboff, 2019).

Dave B. Miller, University of Central Florida. The dis-
cipline of human factors is dedicated to human safety, secu-
rity, and wellbeing, applying often hard-won knowledge to the
human-technology interface. With sophisticated AI systems
shaping our beliefs and desires, helping us drive our cars, and
policing us (Benjamin, 2019), ethics training must be reimag-
ined to prepare students to face new challenges presented by
these new technologies that can act with independent agency
(Miller, 2016) and which can reproduce value choices and bi-
ases at societal scale. AI systems can be both persuasive (Fogg,
2003) and coercive (Eubanks, 2018), and as part of the fabric of
modern society, there is no avoiding them.

Automated systems provide an ability to exert force at a
temporal and spatial distance: decisions made in a cubicle to-
day are performed as actions in some other place, at some fu-
ture time. AI systems, which increase the degree of remove
from human control compared to less flexible forms of automa-
tion, demand even greater scrutiny as they can even more easily
exhibit unpredictable behavior. Considering how the selection
of training sets and other features of AI development almost
inevitably encode the heuristics and biases of system creators,
the parameters of organizational culture are even more pertinent
issues in terms of the risks cultural deficiencies pose.

To this end I propose expanding the scope of engineering
and design ethics to beyond merely avoiding “defective prod-
ucts” to more universally include a focus on technical culture,

and training students about how to create positive technical cul-
tures and avoid or change negative ones. The effect of orga-
nizational culture on safety has been the subject of significant
investigation in many areas, and especially in aerospace where
Diane Vaughan coined the term “normalization of deviance”
(Vaughan, 1996). This term describes the process in which
originally unacceptable behavior becomes routine—often with
disastrous results such as accepting significant risks or allow-
ing callous indifference to biases to persist. With AI systems
that make decisions and take action in response to complex pro-
grams or which are trained and therefore exhibit a degree of au-
tonomy and unpredictability, the organizational culture almost
inevitably will influence the behavior of the system, and thus
issues of culture are now more important than ever given the
spread of AI systems into every corner of our lives. Analyz-
ing the crashes of Boeing’s 737-MAX aircraft, the killing of a
pedestrian by a prototype Uber autonomous vehicle, and even
the race-biased differences in performance of image processing
algorithms shows that faults in the culture of technology com-
panies translate into faulty products of design.

Engineering and design ethics can be further extended from
the regime of avoiding the negative to pursuing the positive.
As Willy Wonka said: “we are the dreamers of dreams”—as
creators of the things that make up our built environment, and
now touch almost every aspect of modern life, it is not too far
a reach to consider pro-social and pro-environmental aims as
integral to the human factors mission. Considering too small a
scope leaves us open to making life easier in some ways while
more difficult in others; or better for some and worse for others.
Given the power of AI systems to shape our information envi-
ronment and increasingly our physical surroundings, we need
to take care in employing such systems when they can have
outsize adverse effects on the already marginalized, and design
these systems with respect to ensuring they actively do good,
remedying extant disparities rather then exacerbating them and
widening the chasms between the haves and have-nots, the fa-
vored and the disfavored.

HF/E practitioners, being involved in the design and valida-
tion of many products, services, and systems, bear perhaps spe-
cial responsibility for considering not just the immediate safety
risks and threats to usability, but societal risks as well, as they
can bring to the fore issues beyond pure engineering concerns.
Educating HF/E students to understand the role AI has and will
continue to play in shaping society can help to address hazards
such as the extension of sexism, race and class bias, wealth in-
equality, and political polarization. Students, especially engi-
neers, need to be part of scholarly discussions regarding major
social problems and how technology can exacerbate or help to
remedy them. They cannot graduate retaining the mindset that
they are mere technologists and remedying social problems is
beyond their purview. Integrating ethics, with a broad social
focus, into the curriculum is a way we, as educators, can fur-
ther the essential work of making the world a safer and more
pleasant place, for everyone.

Ben D. Sawyer, University of Central Florida. Our dis-
cipline is quite convinced that humans are not difficult to ma-
nipulate. We can therefore agree that great caution, and altruis-
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tic intent, must prevail as we invest previously unseen amounts
of human intellectual capital in the creation of agents capable
of manipulating human behavior. Such technologies may un-
doubtedly serve noble purposes, but their very existence should
give us pause. In my recent book chapter on automation, au-
tonomy, and artificial intelligence (A3), I argue that it is crucial
that we design A3 we will all like (Sawyer, Miller, Canham, &
Karwowski, 2021).

I also believe we are going to be incapable of not lov-
ing forthcoming A3; our own discipline is currently engaged in
helping these systems to be very capable of pushing humanity’s
many, shockingly exposed, buttons. Loving something you do
not like is a special type of hell which I will here suggest that
we work hard to not build for ourselves, and those that come
after us. Consider: distrust and mistrust of current and previ-
ous generation technologies costs lives (Parasuraman & Riley,
1997). A similar catastrophic failure in coming generations of
A3 might negatively alter the very fabric of human experience,
restructuring the way we work, live, and even think. My con-
tribution to the panel is a call for change. First, we must retain
relevance through aggressive action in three parts: research, ap-
plication, and education. We must perform research that asks
the hard questions. There are a few other engineering-adjacent
communities interested in the roots of trust , ethics, success,
failure, pleasure, and misery. Here, we dare not simply wave
our hands, we must instead use them to excavate the truth and
hold it out for all to see. Researchers must arm our practice-
oriented colleagues with these truths, and send them into the
field to apply them where they can make real impact on the di-
verse futures available. Human factors has always relied upon
its practitioners for the hard work of making the real changes
in the world, and we will rely on them again. Finally, we must
attract and train those who are not our equals, but our superi-
ors in this task. As directly addressed in previous iterations of
this panel, human factors presently runs the risk of losing our
ability to guide the development of technology through simple
lack of technical ability. This must not happen, and must be
counted aggressively in curricula, culture, and through radical
inclusivity. Technically adept students, from diverse socioeco-
nomic backgrounds and from every community on earth, must
find programs of human factors to be welcoming, challenging,
and springboards into careers that effect the change we need.

We must all find human factors to be springboards into ca-
reers that are building a better future. Regrettably, cognitive en-
gineering can be used to look for exploits in cognition, human
performance does not necessarily need to focus upon enhance-
ment, and the deficit foundations of the psychological portion
of our training leaves us well-equipped to find intersections of
those deficits with desirable, often profitable, patterns of behav-
ior (Canham & Sawyer, 2020; Sawyer et al., 2021). But our
community is also a bastion of careful, ethical consideration.
Our “safety science” is well-placed for, and currently engaged
in, creating the design decisions, philosophies, and interlock
technologies that will become the building blocks of good tech-
nological teammates. As a science, we understand that tech-
nology alone is not the answer, and that optimal performance
comes from hybrid teams: part human, part machine. We under-

stand the dysfunctions of such systems, and the ways to nudge
them toward stability and comfort. We understand and can warn
of particularly dark futures, including the one in which we all
monitor increasingly capable machines for increasingly rare and
catastrophic failures (Sawyer & Hancock, 2018), alluded to in
practically any applied vigilance paper. We must, however, do
even more. I would like to suggest that the discipline consider
not merely the outcomes and ethics of the systems we build, but
the ethical orientation of our own community

As humans embark on building intelligent teammates, I
suggest we turn our community toward pushing for these agents
to be designed according to an example we as a community
set. Indeed, I argue the discipline might do very well to estab-
lish an oath in this regard, a Primum non Nocere of technology
design. I believe human factors researchers and practitioners
would find “first, do no harm” an excellent mantra by which to
avoid the dark patterns our training can be turned toward. We
already accept this responsibility, engaging in good faith with
IRBs, conducting research ethically, and advocating for all of
the humans within the systems we design. So many of us have
been the rare voice urging consideration of this human factor
on projects, pulling or pushing toward those brighter futures. I
personally have found that by being the person to speak up, I
find allies in my fellow humans, who have some inherent in-
terest. Our community can fortify one another in this common
scenario, for there is strength in common resolve. This is the
reason for the power in a physician’s suggesting that an action
might violate her oath. This can be a path for us, as a commu-
nity, to define and accept great responsibility.

Should human factors as a community work to differenti-
ate itself by embracing a responsibility in navigating humanity
toward brighter futures? I argue yes, and further that there is
profit and glory in this path; respect for this kind of community
commitment has launched other disciplines to new places of re-
gard and utility in society. The details, of course, are crucial.
What should such an oath look like, focused upon A3 and be-
yond? How do we get our students on board? Our peers? Our
teachers? What about everyone else?

Esa M. Rantanen, Rochester Institute of Technology.
As AI systems become increasingly ubiquitous and capable, and
their widespread applications in myriad domains and across all
societal elements, the influence of AI, including its unintended
and unforeseeable consequences, will also be felt on a larger,
societal, scale than has been a case with earlier technologies.
The most difficult research questions therefore pertain to scale.
Current and future ML/AI-based automation will penetrate ev-
ery aspect of people’s lives, through networked devices (Inter-
net of Things, IoT) and collection of vast amounts data through
them, and sharing these data in myriad forms across the IoT
and different government and private entities. Past approaches
to human-system integration and cognitive systems engineer-
ing must be correspondingly “scaled up”. As AI will touch the
lives of everybody, increasing human variability across hetero-
geneous user groups presents additional challenges.

Effective communication between AI and human collab-
orators is critical, including models of the agents’ (both hu-
man and machine) models of their environment, goals, con-
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straints, and intents, and the moment-to-moment changes in
these. Unique human characteristics, most importantly their in-
tuitive decision-making and social- and emotional intelligence,
must be represented in a way that is understandable to the
machine. What kinds of models of humans do AI systems
trained by Imitation Learning or Inverse Reinforcement Learn-
ing (Alexander, 2018; Piot, Geist, & Pietquin, 2016) build?
How are such models represented for evaluation and validation?

Ubiquitous interactions between two fundamentally differ-
ent agents, humans as analog beings (Norman, 1998) and digital
computers, each relying on imperfect and different but interac-
tively and dynamically shaped models of each other presents
many fundamental research problems. The danger is to mis-
take formal and often numerical models for reality, and build
systems based on such deficient specifications of what is real
(Christian, 2020). Critical and in-depth study of models, in-
cluding development of appropriate methods for their study, is
therefore paramount for both future development of AI-based
technologies and training of those developing them, for “All
models are wrong, but some are useful” (Box, 1979).

A particularly difficult challenge for human-AI interac-
tion research is that the problem is multiple-dynamic (Reason,
1990). AI is trained by experience with human interactions,
but these interactions are also influenced by the human experi-
ence with the AI agent. In terms of models, AI systems model
humans as walking neural nets being trained by the systems
themselves (Christian, 2020). Development of “supermodels”,
or models of models, of human-AI interactions is therefore a
critical challenge for the HF/E community to tackle. Training
of those who will do research with such “supermodels” is of
course the first task.
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