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Multitasking related demands can adversely affect drivers’ allocation of 
attention to the roadway, resulting in delays or missed responses to road-
way threats and to decrements in driving performance. Robust methods 
for obtaining evidence and data about demands on and decrements in the 
allocation of driver attention are needed as input for design, training, and 
policy. The detection response task (DRT) is a commonly used method 
(ISO 17488) for measuring the attentional effects of cognitive load. 
The AttenD algorithm is a method intended to measure driver distraction 
through real-time glance analysis, in which individual glances are con-
verted into a scalar value using simple rules considering glance duration, 
frequency, and location. A relationship between the two tools is explored.  
A previous multitasking driving simulation study, which used the remote 
form of the DRT to differentiate the demands of a primary visual–
manual human–machine interface from alternative primary auditory– 
vocal multimodal human–machine interfaces, was reanalyzed using 
AttenD, and the two analyses compared. Results support an association 
between DRT performance and AttenD algorithm output. Summary sta-
tistics produced from AttenD profiles differentiate between the demands 
of the human–machine interfaces considered with more power than analy-
ses of DRT response time and miss rate. Among discussed implications is 
the possibility that AttenD taps some of the same attentional effects as the 
DRT. Future research paths, strategies for analyses of past and future data 
sets, and possible application for driver state detection are also discussed.

Operating a vehicle is a task with great variability in demand owing to 
the dynamic, complex environment within which it takes place. When 
secondary in-vehicle tasks draw on the same resources required for 
driving, there is increased potential for impaired multitasking, and 
either driving or in-vehicle task performance, or both, may degrade 
(1). Drivers commonly attempt to compensate for increased demand 
from multitasking, for example, by either maintaining a greater 
following distance (2) or by driving more slowly (3). Despite 
these demand-mitigating strategies, unexpected spikes in roadway 

demands, or demands of the in-vehicle task itself, can lead to over-
load, dynamic instability of the driving task, and subsequent failure 
to detect and avoid hazards (4). For the individual, elevated demand 
levels may be inconsequential so long as overall load remains stable 
and sufficient resources are available. For the same reason, driving 
detriment owing to occasional high demand spikes may be difficult for 
researchers to detect unless extreme and often environmentally invalid 
manipulations are deployed (5). Even then, commonly used measures 
such as variability in lane position and longer psychological refractory 
periods can be subtle or changeable in pattern (2). As such, there is 
a need for better assessment methods that provide less ambiguity in 
evidence of driver overload risk and associated distraction.

In the pursuit of robust indicators of overloaded driving, several 
approaches have been taken. Peripheral detection tasks (PDTs) were 
succeeded by detection response tasks (DRTs) (6), which have been 
characterized in recent years as a method for measuring the attentional 
effects of cognitive load. Methods for use of DRT as a cognitive load 
measure are described within ISO 17488 [Road Vehicles—Transport 
Information and Control Systems—Detection-Response Task (DRT) 
for Assessing Attentional Effects of Cognitive Load in Driving, 
2013]. In this approach, a stimulus is presented every few seconds, 
and the driver is asked to respond to it when it is detected (using 
a small response button attached to an index finger on their left 
hand). The stimulus may be either tactile (a vibration applied to 
the skin of the shoulder) (tactile DRT, or TDRT), or visual, in the 
form of a small red light on a head-mounted antenna (HDRT, for 
head-mounted DRT), or a remotely mounted red LED (remote 
visual DRT, or RDRT). The DRT stimuli appear randomly every 
3 to 5 s (measured from one stimulus onset to the next), and are 
sustained for an exposure duration of 1 s. The DRT task is designed 
to be presented concurrently while the driver performs other, sec-
ondary tasks. Measurements of response time and accuracy (hit 
and miss rates) are its outputs. Changes in these measures across 
conditions are interpreted to arise primarily from the cognitive load 
effects of the task being tested. This is particularly well supported 
for tactile and head-mounted DRTs, which minimize the need for 
glancing to see the DRT stimuli. However, every DRT has specific 
input modality characteristics—and the effects of a secondary task 
on the response metrics will depend on the configuration of demands 
needed to perform that DRT—in combination with the other tasks 
under way. For instance, if visual orientation in the general direction 
of the forward roadway is required to detect a remote DRT stimulus, 
this will be more greatly affected by visual secondary tasks than will 
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a tactile or head-mounted DRT. Thus, a DRT could be more broadly 
characterized as assessing the effects of task load on attention—
with some forms of DRT tending to minimize effects of any visual 
processing (e.g., tactile DRT)—and other forms of DRT tending to 
reflect both visual and cognitive aspects of a secondary task’s effects 
on the DRT response [e.g., Ranney et al. (7)]. Signal detection analy-
sis approaches can help to refine such analyses by disambiguating 
the accuracy measure (8).

The value of such data is multifaceted, but one promising use 
is in the evaluation of the demands associated with in-vehicle user 
interfaces (9). Several lines of research suggest that auditory–vocal 
interactions, while increasing demand placed on the driver relative to 
just driving, result in lower self-reported workload and divert visual 
resources from the roadway less than their visual-manual counterparts 
(10–13). However, the extent to which elevated cognitive demand 
is present in such interactions has been raised (14–16). One body 
of work (16–18) has used the DRT to quantify the relative cognitive 
demand of various experimental auditory–vocal interactions as well 
as real-world auditory–vocal involved interfaces from the structural 
demands of just driving (although in the absence of comparison to 
alternate visual-manual interfaces for accomplishing the same goals). 
While such work provides data on impairments in responsiveness to 
the DRT during device interaction, it is difficult to fully assess the 
degree to which the DRT is assessing cognitive demand in isolation 
or in combination with visual processes in these studies. Findings 
on drivers’ interaction strategies with auditory–vocal interfaces have 
strong implications for effective vehicle human–machine interface 
(HMI) design, driver training, and legislation and regulation. As such, 
deeper understanding of the role of the DRT as an assessment metric 
and the relationship between the measure and other alternatives is 
critically needed.

The DRT methods covered in ISO 17488 have been shown to be 
quite sensitive to increases in cognitive load using objectively defined 
levels of working memory demand [e.g., Ranney et al. (7)]. Nonethe-
less, the emphasis on the use of the DRT to detect the effect of cogni-
tive load on attention leaves open the question of how cognitive load 
and visual demand considerations interact, or might be considered 
together, to estimate net demand for purposes of HMI comparisons. 
Furthermore, the introduction of the response task itself is the intro-
duction of further multitasking, and so the very act of using the DRT 
(or PDT) to observe driver behavior may exert an influence on that 
behavior. For example, a recent study observed that mental workload 
was rated higher in simulated driving with visual or tactile DRTs than 
without (19). This is concerning for reasons of environmental valid-
ity. Furthermore, the DRT can only probe effects intermittently—
every few seconds during engagement in a secondary task. It cannot 
give an uninterrupted picture of how attention is allocated during the 
primary driving task, or even moment-to-moment assessment during 
the period of multitasking itself.

Kircher and Ahlström and Kircher et al. introduced the AttenD 
algorithm to detect distracted driving based on the allocation of visual 
resources (20–22). The AttenD algorithm has promise as an unob-
trusive measure and, unlike the DRT measurement method, does not 
impose demands of its own on the driver. Instead, the AttenD met-
ric is derived from measurements of the natural, unaltered glance 
patterns that take place while driving and when nondriving-related 
tasks are duly performed. In the AttenD model, when the calculated 
metric falls to zero, the driver is considered to be distracted, although 
thinking of this value as a binary threshold likely underrepresents 
the potential power of the measurement approach. As a distraction 
detection algorithm, AttenD has been validated with empirical data 

and compared with other vision-based distraction detection algo-
rithms (23). The AttenD algorithm provides a continuous measure 
over an epoch of driving or multitasking, which is important.

Kircher and Ahlström and Kircher et al. explicitly presented the 
AttenD algorithm  as a method to provide a continuous indication of 
the “extent of inattention or distraction” shown by a driver (20–22). 
While it is not the primary focus of the current paper, those authors 
have been involved in efforts that build on elements of AttenD, but 
that reconceptualize the resulting metric as a continuous measure of 
driving-relevant attention across time, as opposed to the important but 
potentially narrower concept of distraction. Both the aforementioned 
work and the original AttenD algorithm offer a potentially more 
complete picture of attention than does the intermittent detection of a 
DRT stimulus probe across such an epoch. Such moment-to-moment 
measures of driving-relevant attentional resource allocation, which 
increase during glances to the road and decrease while the driver 
looks away, can additionally provide an index of driver awareness 
of the road environment. Consequently, such an approach may be 
considered a potentially powerful tool in understanding the impact of 
in-vehicle HMI on driver attention.

A key research question the present work addresses is this: If vari-
ous HMIs used in-vehicle present a variable mix of visual, manual, 
auditory, vocal, cognitive, and perhaps other (e.g., haptic) demands, 
how might various interfaces most pragmatically be compared for 
their impact on overall driving-relevant attention? HMIs available 
in the automobile are increasingly leveraging modalities beyond 
vision to present information to the driver (e.g., auditory). Control 
and selection modalities now extend beyond manual manipulation 
to frequently include voice-command options. The traditional divi-
sion of demand into silos of visual, manual, and cognitive resources 
may not be the most useful approach given the reality of modern 
in-vehicle HMIs. Cognitive resources are arguably involved in all 
HMI interactions, and those production interfaces characterized 
as cognitive (e.g., auditory–vocal) might better be considered as 
multimodal in that they often involve significant draw on visual 
resources (24–26). With these considerations in mind, two seem-
ingly distinct assessment methodologies—the DRT, which has been 
forwarded as a measure of the effect of cognitive load on attention 
and the AttenD, reconceptualized as a measure of visual attention 
allocation—are compared in how they rank the attentional demands 
of actual user interfaces.

An exploratory effort was undertaken to use the AttenD algo-
rithm to reanalyze glance data from a simulator study on driver 
multitasking that used the remote DRT technique. Broadly, the 
researchers wanted to understand if a continuous measure of atten-
tion captured through the AttenD algorithm and discrete sampling 
afforded by the DRT would provide similar interpretations of rela-
tive demand across several HMIs. In comparing the two assessment 
approaches, this data source supported consideration of a classically 
defined visual–manual HMI interaction as compared with two vari-
ants of an auditory–vocal HMI for completing the same secondary 
task goal.

Methods

This study is a secondary analysis of data from Munger et al. (27), 
which investigated drivers’ use of different interface modes for des-
tination address entry while driving. While complete methodological 
details can be found in the initial paper, key details are summarized 
as follows.
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Participants

Participants were recruited across two age groups (20 to 24 and 
over 55) from the greater Boston area using online and newspaper 
postings. Participants were required to meet several criteria: (a) a valid 
driver’s license for more than 3 years, (b) driving on average at least 
one time per week, (c) being in self-reported reasonable good health 
for their age and meeting a set of health exclusion criteria, (d) clearly 
understanding and speaking English, (e) no police-reported accident 
in the past year, and ( f ) not actively using any medications causing 
drowsiness. Compensation of $40 was provided. Of the 24 partici-
pants from the original study analysis set, 2 cases had video image 
issues that precluded coding of the glance data, which resulted in  
22 cases being available for the present analysis (mean age = 46.18, 
SD = 21.51, min = 20, max = 68, n = 9 females and 13 males).

Apparatus

The study used a fixed-based driving simulator in the MIT AgeLab: 
a full cab Volkswagen New Beetle with a front projection system 
providing a view of approximately 40 degrees (Figure 1). Graphical 
updates were generated using STISIM Drive version 2.08.02 (Systems 
Technology, Inc., Hawthorne, California) based on a driver’s inter
action with the steering wheel, brake, and accelerator. Instructions and 
audio tasks were prerecorded and presented through the vehicle sound 
system. Correspondence between the demands of this simulator con-

figuration and actual driving scenarios has been established through 
previous research (28, 29). The driving scenario consisted of a two-
lane rural road, without curves and a posted speed limit of 50 mph. A 
CogLens remote mounted DRT was implemented in accordance with 
ISO 17488. A red LED was mounted on the windshield within the field 
of view of the forward roadway, and responses were recorded from a 
microswitch placed on the participant’s left index finger. Following 
the standard, the LED was activated every 3 to 5 s for a period of  
1 s or until the participant responded using the finger-mounted switch.

Destination Entry Device

Participants entered destination addresses in a Samsung Galaxy S4 
(model number SCH-1545; released March 2013) with a 5-in. dis-
play and 1,920 × 1,080 resolution. The device was free floating (not 
mounted), and participants held it in their hands or rested it on the 
center console or other location at their discretion while performing 
tasks. Navigation tasks were carried out using Google Maps. Par-
ticipants were extensively trained on how to enter an address using 
three interaction modes (Table 1). One mode required visual–manual 
touchscreen interaction; the two other modes were auditory–vocal–
visual–manual (e.g., voice-based commands). For all three methods, 
participants had to first wake up the phone by pressing the large 
home button at the bottom of the screen. To enter voice recognition 
mode, participants double-tapped the home button. For the touch 
interface, participants opened Google Maps, typed a specified address 

(a) (b)

FIGURE 1    (a) MIT AgeLab driving simulator at time of study and (b) location of the remote visual DRT light on the lower windshield in line of 
sight of the forward roadway.

TABLE 1    Destination Entry Steps for All Three Modes

Step Voice: Standard Voice: Hands Free Manual (Touchscreen)

1 Tap Home button to wake up screen.

2 Double-tap Home button. Open Google Maps application.

3 Speak: “Navigate to 3-8-5 Prospect St, 
Cambridge”.

Speak: “Hi Galaxy”. Tap Search bar. 

4  Speak: “Navigate to 3-8-5 
Prospect St, Cambridge”.

Type address: “385 Prospect St, Cambridge” 
and select address when it appears.

5 Select the car icon to show routes.

6 Select “Start navigation”.
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into the search bar, selected a car icon to show driving routes, selected 
a route, and tapped “Start navigation.” In the hands-free mode, par-
ticipants enabled the voice recognition feature by double-pressing 
the home button. The phone then presented one of several possible 
introductions, for example, “Hello, I hope you are having a great and 
productive week. If you need any help say, ‘Hi Galaxy’.” After say-
ing “Hi Galaxy,” the command structure was “navigate to,” followed 
by the street address. In the standard voice mode, the verbose audio 
introduction and “Hi Galaxy” command were omitted; after double-
tapping the voice button, participants would immediately speak the 
navigation command.

AttenD Algorithm

Scores are generated from a 2-s time buffer, which increases while a 
driver looks on-road and decreases while the driver looks away from 
the road. The closer the buffer falls to zero, the closer the driver is 
assumed to be to a distracted state. More details of the algorithm can 
be found in Kircher and Ahlström’s and Kircher et al.’s original man-
uscripts (20–22), which were used to perform buffer calculations. 
Figure 2 illustrates one participant’s buffer profile during the manual 
destination entry task.

Procedure

Participants read and signed an informed consent on arrival. Partici-
pants were then instructed on how to perform the navigation tasks, 
and they were given an opportunity to practice entering an address 
for all three destination-entry modes on a tablet while seated in the 
lab. Once participants were able to correctly enter an address using 
all three modes, they moved to the driving simulator, where they were 
trained on how to perform the DRT, completed an introductory drive, 
and then practiced the dual task of driving and responding to the DRT.

The experimental period consisted of three counterbalanced blocks 
corresponding to each of the destination entry modes. Following ISO 
guidelines, each experimental block began with a training period 
building up to the triple task of driving, responding to the DRT, and 
entering a destination. Participants performed the destination entry 
task while stationary, first without, and then with, the DRT. The pro-
cess was then repeated while driving. Participants were required to 
achieve proficiency on each training condition (defined as performing 
the task correctly while also responding to at least 70% of the DRT 
stimuli) before advancing to the next stage.

During evaluation periods, participants engaged in 3 min of 
single-task driving and were then asked to enter the address “177 Mas-
sachusetts Ave, Cambridge” while simultaneously responding to the  
DRT. After the device had finished calculating directions, partici-
pants canceled the address by pressing the phone’s “Back” button 
until they reached the home screen. After a 30-s separation period, 
a 60-s baseline DRT period followed, and then another 30-s sep-
aration. Participants then completed a second destination entry 
(“293 Beacon St, Boston”) while responding to the DRT.

Glance Coding

Glances were coded manually from video of drivers’ faces. Follow-
ing recommendations in Reimer et al. (15), two analysts indepen-
dently coded glance locations using the MIT AgeLab video annotator 
(https://bitbucket.org/agelab/annotator), and a third analyst medi-
ated variation (e.g., in regard to glance location, or timing onsets 
and offsets of more than 200 ms for a coded glance). Nine glance 
regions were coded: (a) road, (b) phone and device, (c) instrument 
cluster, (d) rearview mirror, (e) right, ( f ) left, (g) research assistant, 
(h) other, and (i) eyes not visible.

Data Reduction and Analysis

A linear mixed-effect model with task type as a fixed within-
participant effect and participant as a random effect was applied with 
the Kenward-Roger correction to adjust the F-statistics and degrees 
of freedom. As an effect size, both marginal R2, which describes the 
proportion of variance explained by the fixed factor alone, and condi-
tional R2, which describes the proportion explained by the fixed and 
random factors, were reported. For post hoc tests, a paired t-test was 
applied to the DRT measurements (reaction time and miss rate), and a 
Welch two sample t-test was applied to the buffer measurements (mean 
and standard deviation) owing to unbalanced sample sizes across  
conditions. Analyses were performed using R (30).

Results

First, the ability of the DRT and AttenD buffer to capture a difference 
between visual–manual and auditory–vocal tasks was tested. Results 
showed that there was a significant effect of task type on (a) DRT 
response time, F (2, 42) = 5.16, p < .01, marginal R2 = .07, and con-
ditional R2 = .57; (b) buffer mean, F (2, 39.46) = 211.12, p < .001, 
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FIGURE 2    Example of a buffer profile over time; illustration style was modified from Kircher  
and Ahlström (20).
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marginal R2 = .85, and conditional R2 = .88; and (c) buffer SD,  
F (2, 39.15) = 103.81, p < .001, marginal R2 = .68, and conditional  
R2 = .81 (Figure 3 and Table 2). However, there was no significant 
effect of task type on DRT percent missed. Post hoc t-tests showed 
that there were significant differences between the visual–manual 
task and two auditory–vocal tasks for (a) DRT response time, t (21) =  

3.54, p < .01 for the voice hands-free and t (21) = 2.23, p < .05 for 
the voice standard; (b) buffer mean, t (24.57) = −13.9, p < .001 for 
the voice hands-free and t (26.22) = −13.47, p < .001 for the voice 
standard; and (c) buffer SD, t (36.19) = 10.71, p < .001 for the voice 
hands-free and t (32.78) = 9.95, p < .001 for the voice standard. How-
ever, there were no statistical differences between the two voice tasks 
for either the DRT or buffer. The results indicate that the manual tasks 
led to slower DRT response time, lower buffer mean, and higher 
buffer standard deviation (SD) compared with the two auditory–vocal 
tasks (Figure 4); the magnitude of the effect was greater for the buffer 
measurements compared to DRT measurements.

Second, a relationship between DRT measurements and buffer 
measurements was tested. Results showed that (a) there was positive 
correlation between DRT response time and DRT percent missed,  
r (60) = .49, p < .001, indicating that slower responses were associ-
ated with higher miss rates and vice versa; (b) DRT response time 
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FIGURE 3    Task-level comparison of (a) DRT response time, (b) mean buffer, (c) DRT percent missed, and (d) SD buffer 
across task types; error bars indicate mean-adjusted standard error.

TABLE 2    Summary of Analysis of Variance Tests

F df p
Marginal 
R2

Conditional 
R2

DRT RT   5.16 2, 42 .01 .07 .57
Buffer mean 211.12 2, 39.46 .001 .85 .88
Buffer SD 103.81 2, 39.15 .001 .68 .81

Note: RT = response time; df = degrees of freedom.
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was negatively correlated with buffer mean, r (60) = −.3, p < .05, and 
positively correlated with buffer SD, r (60) = .25, p < .05; and (c) DRT 
percentage of missed trials was positively correlated with buffer SD, 
r (60) = .32, p < .05 (Figure 5).

Discussion of Results

A primary motivation for this study was to examine how two different 
assessment methodologies—one presented as a measure of the effect 
of cognitive load on attention and the other, based on a consideration 
of how glances are allocated on and off the roadway, as a measure of  
attention—compare in how they rank the attentional demands of 
actual user interfaces in a driving context. This is of particular inter-
est in that one of the HMIs evaluated represented what would tra-
ditionally be thought of as a primary visual–manual interface, while  
the other two represented slight variants on what might classically be 
considered as HMIs characterized by cognitive demand (because of 
their auditory–vocal aspects). As already discussed, the latter HMIs 
might more realistically be considered as multimodal since some 
visual–manual demand characteristics were certainly present. Broadly 
speaking, the results show that both the remote DRT and the AttenD 
assessment methods produced results that would lead to similar con-
clusions concerning the relative attentional demand of the three HMIs, 
particularly if the DRT response time metric is given more weight than 
the miss percentage metric. More specifically, the visual–manual tasks 
led to slower DRT response times and lower buffer mean values (more 
inattention), as compared with the auditory–vocal (multimodal) tasks.

Looking more closely at the data, it appears that the AttenD algo-
rithm was able to differentiate the visual-manual and auditory–vocal 
(multimodal) interfaces (Figure 3) with greater confidence (i.e., the 

standard error was much tighter around the AttenD values, and there 
was a larger effect size) than the DRT metrics. It can also be observed 
that the AttenD algorithm’s mean and SD values were quite similar 
in their ability to differentiate the tasks.

The finding that the DRT miss percentage value did not prove as 
consistent in grouping and discriminating between the three HMIs as 
DRT response time is not an entirely unexpected result. Miss rates are 
generally relatively low for most real-world production HMIs used 
in the driving environment. Because of the limited number of DRT 
stimuli presented during the duration of such HMI tasks, a single miss 
can have a major impact on the effective miss percentage, resulting in 
a less stable measure than response time.

A positive correlation between DRT response time and DRT percent 
missed (slower responses times were associated with higher miss rates) 
was accompanied by negative correlations between DRT measures 
and mean buffer values, and positive correlations between DRT mea-
sures and buffer SD. The results may indicate that more attention to the 
roadway (i.e., higher buffer mean) leads to faster DRT responses and 
greater variability of forward attention (i.e., higher buffer SD) leads 
to slower DRT responses. Results show that DRT measurements are 
moderately correlated with the attention buffer measurements. While 
the magnitude of the correlations is only moderate, the fact that 
the relationships between a continuous measure (AttenD algorithm) 
and a measure that probes attention only intermittently (DRT) are 
significant is noteworthy.

Several implications arise from these data. First, they indicate that 
measures based on the allocation of visual attention may to some 
extent tap into the effects of cognitive demand associated with 
multitasking or at least provide effectively similar discrimination 
of relevant HMIs as provided by the remote DRT. There is a need 
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for further research investigating connections between outputs from 
these two tools in the context of other multimodal HMIs. At mini-
mum, however, it is appropriate for investigations to consider a more 
unified theoretical approach to attention and its management during 
multitasking than the classical segregation of demand into visual, 
manual, and cognitive domains. Second, given that both methods dif-
ferentiate between primary visual–manual and multimodal HMIs, an 
AttenD style approach presents some strong advantages. The effect 
sizes seen in the present comparison effectively suggest that similar 
understanding of the differences between multimodal HMIs could be 
obtained running fewer participants using AttenD (or a conceptually 
related algorithm), providing a savings of time and money, or provid-
ing the freedom to run more comparisons when evaluating poorly 
understood, novel designs, such as Google Glass (1, 31). Moreover, 
constructing the types of attention buffer profiles presented here 
requires no artificial tertiary tasks, yielding potential benefits in terms 
of environmental validity. Future work may even be able to exploit 
this point to calculate the actual impact of tasks used in various forms 
of DRT investigation.

Furthermore, an AttenD style approach to demand assessment 
may be retroactively generated from existing visual data. Many past 
efforts have already collected glance data of the type needed by an 
algorithm like AttenD; for example, glance data are often acquired 
to assess visual demands under various voluntary guidelines [e.g., 
NHTSA (32) and Alliance of Automobile Manufacturers (33)]. Given 
that the AttenD profiles provide a continuous indication of drivers’ 
attention and inattention, outputs can be used to conceptualize a more 
complete picture of attentional effects of HMI interaction. Finally, 
assessments can be easily expanded to on-road data where the col-
lection of DRT metrics is more difficult or infeasible. As with simu-
lation data, AttenD style algorithms could be retroactively applied 

to naturalistic data sets [e.g., Seaman et al. (34)]. In this context, dif-
ferences in the attentional characteristics of baseline near-crash and 
crash events can be compared under the context of a framework bal-
ancing attentional demands to and from the road. The researchers’ 
efforts are currently focused on optimizing the sensitivity of more 
advanced implementations of the buffer concept for HMI evalu-
ation and real-time driver state estimation. In this context, further 
refinement of the attention buffer concept is being developed to 
optimize the measurement to balance the safety relevance of visual 
and cognitive demands on driver attention.
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