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Abstract Effective cyber defense depends upon intrusion detection, i.e., the pro-
cess of monitoring, detecting, and reacting appropriately to cyber activity threat-
ening network security. Intrusion detection requires the execution of multiple
unique, interdependent network analysis tasks. The current study aimed to expand
understanding of cyber defense by separately assessing task induced workload and
stress for two key network analyst tasks, triage analysis and escalation analysis,
which are the first and second lines of cyber defense, respectively. In separate
studies, participants assumed the role of either a triage analyst or an escalation
analyst, performed associated intrusion detection duties in simulated cyber task
environments, and reported task induced workload and stress. Findings suggest
that, even though triage and escalation analysts are both engaged in cyber defense,
their tasks result in differentiable workload and stress profiles. This highlights the
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need for further human factors research examining operator performance and state
across network analyst roles.

Keywords Cyber defense � Network analyst � Workload � Stress

1 Introduction

Military, industrial and commercial organizations have become increasingly reliant
on the function of networked computer systems. Such cyber technologies have
proven advantageous in each of these domains—enhancing individual and organi-
zational capabilities. However, these benefits are not without risk. As former Chief
Scientist of the U. S. Air Force Mark Maybury [1] cautioned, cyberspace is fre-
quently contested, meaning that cyber assets are vulnerable to exploitation, intru-
sion, and attack. Consequently, it is crucial that adequate cyber defenses are
deployed against such actions. The urgency of this need is highlighted in Maybury’s
report in which he suggests that the frequency, variety, and potential harm of cyber
threats are likely to increase dramatically in the near future. In that report, Maybury
recommended bolstering cyber defenses through scientific research and technolog-
ical development. While many of his recommendations focus on optimization of
technological capabilities (e.g., cloud computing, improvements to automated
defense algorithms), the human side of cyber defense is also noted as an area for
critical need for continued research. Specifically, research is required to assess the
nature of human-computer interaction in the cyber domain and the effects that these
interactions have on cyber operators’ mental state and performance capabilities.

Initial research regarding human cyber defenders has focused on task analyses,
which provide insight into the nature of tasks that those defenders are required to
perform [e.g., 2]. Chief among them is computer network defense analysis, or
network analysis, a multifaceted method of monitoring computerized networks to
ensure their security. Toward this end, human network analysts are tasked with
intrusion detection, i.e., “the process of monitoring the events occurring in a
computer system or network and analyzing them for signs of possible incidents,
which are violations or imminent threats of violation of computer security policies,
acceptable use policies, or standard security practices” [3]. Simply stated, intrusion
detection is the first line of defense against immediate cyber threats.

Network analysts are aided in this endeavor by automated Intrusion Detection
Systems (IDS), which algorithmically inspect all network events and compare them
to a database of known malicious activity. As the potential harm that undiscovered
cyber attacks may cause is quite high, IDS systems typically exhibit a liberal bias.
Network events that are even broadly similar to profiles of known malicious activity
are marked as potentially suspicious and passed to human network analysts for
further inspection. At this point, the process of intrusion detection requires human
operators to execute multiple unique, interdependent network analysis tasks [2].
Two of these tasks, triage analysis and escalation analysis, are integral to successful
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intrusion detection. Depending on the organization of a given cyber defense team, a
single network analyst may perform one or both of these unique tasks [2]. They are
discussed here as if performed by separate network analysts; such division of duty is
typical in large organizations [2].

Triage analysis requires a network analyst to monitor the alerts that an IDS
generates regarding potentially suspicious network activity. Triage analysts must
evaluate the veracity of IDS alerts by inspecting relevant network sensor data. They
determine whether the IDS alert represents truly suspicious network activity or if it is
a false alarm. However, the high volume of data moving within and through modern
networks, coupled with the bias mentioned above in IDS alerting, results in problems
for analysts. Specifically, the number of alerts and false alarms generated by an IDS
may be extreme, deluging analysts and forcing them to strategically sample alerts,
rather than exhaustively investigating each one [4]. As a result, triage analysts
typically have only a few minutes (often less) to evaluate each alert and determine
whether each represents suspicious activity. If triage analysts find adequate evidence
to support an IDS assertion of a suspicious network event, they will forward that alert
to an escalation analyst. Otherwise, the alert will be discarded as a false alarm [2].

Escalation analysts are responsible for following up on the leads provided by
triage analysts. This subsequent investigation typically involves a more thorough
inspection of the network data. Escalation analysts have access to more sources of
network data and may refer to external sources (e.g., the World Wide Web) to
determine if malicious activity truly occurred. While escalation analysts are pres-
sured to complete their alerts as quickly as possible (and in some cases within
organizationally determined temporal limits), their work is more self-paced, unlike
the work of triage analysts, where the pace of work is determined by the pace of
incoming network traffic. If escalation analysts believe that there is enough evi-
dence to confirm that an intrusion has occurred, they will recommend that an
incident investigation be opened.

The procedural information provided by task analyses is supplemented by sur-
veys of active cyber operators and experimental studies meant to assess the stress
and workload associated with a network analyst’s duties. Chappelle and colleagues
[5] surveyed more than 500 active cyber operators, including computer network
defense analysts. These operators reported a high degree of chronic, occupational
stress and cited many organizational factors (e.g., leadership) and scheduling factors
(e.g., shift-work) as sources of their distress. Other studies have shown that in
addition to these occupational stressors, acute, task-related stress and workload are
also potential concerns for cyber operators. Experimental simulations of cyber
defense tasks have demonstrated that the performance of such tasks leads to ele-
vated stress and reports of high workload [e.g., 6]. These extreme levels of stress
and workload likely contribute to the high rate of burnout that has been reported by
the cyber community [5]. Further, stress and overload are concerns because they
may cause network defense analysts to lose situational awareness and reduce their
ability to maintain network security [4].

To date, no studies have examined the possibility that stress and workload differ
depending on the type of cyber defense task being performed. Instead, workload
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and stress have often been assessed in a coarse manner by grouping multiple types
of network analysts—or even cyber operators in general—into a single group
[e.g., 5]. Some experimental studies have used simulated network analyst tasks to
assess workload and stress more specifically, but none have drawn comparisons
based on network analyst roles. Given the procedural differences between triage
analysis and escalation analysis, it is possible that the degree and profile of
task-related stress and workload differ between triage and escalation analyses. The
present study was conducted to examine that possibility by comparing subjective
stress and workload ratings from a simulated triage analysis task and a simulated
escalation analysis task. The data used for these comparisons were generated in two
different studies, one examining factors affecting operator state and performance in
triage analysis and another examining factors affecting operator state and perfor-
mance in escalation analysis. Given that these data were collected at different points
of time, for different purposes, and using two different simulated network analysis
tasks, we are treating the current analyses as exploratory. As such, our investigation
focuses on description more so than direct inferential comparison of the two net-
work analyst tasks. However, if task-related differences were apparent, they would
encourage further research to explore task-related factors in network analysis.

2 Method

2.1 Participants and Design

This study utilized two data sets from two separate experiments: a study of triage
analysis [7] and a study of escalation analysis [8]. Both samples consisted of
college-age students and young adults recruited from Wright-Patterson Air Force
Base and the surrounding area. Although the studies were completed at different
times, both involved individual testing which was conducted in the same quiet,
windowless laboratory room, using similar computer hardware and glare-controlled
displays. Twenty-seven participants completed the triage analysis task and forty-six
participants completed the escalation analysis task. Subject matter experts guided
development of each simulated task in order to ensure validity. For the sake of
brevity, methodological and task-related details are limited within the current report
but are reported in greater detail elsewhere [7, 8]. Both experiments were approved
by the WPAFB Institutional Review Board.

2.2 Measures of Stress and Workload

Stress was assessed using the Dundee Stress State Questionnaire (DSSQ) [9].
The DSSQ is a 96-item self-report measure of task engagement, distress, and worry.
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Two different instruments were used to assess workload: the NASA-Task
Load Index (NASA-TLX) [10] and the Multiple Resources Questionnaire
(MRQ) [11, 12]. The NASA-TLX is a subjective measure that provides a global
level of workload in addition to a workload profile based on six factors: mental
demand, physical demand, temporal demand, performance, effort and frustration.
All NASA-TLX items are rated from 0 (very low) to 100 (very high). The MRQ
uses a scale ranging from 0 (no usage) to 100 (extreme usage) and participants are
asked to rate demand on 17 MRQ items, each of which represents demand upon one
independent, perceptual or cognitive resource.

The DSSQ, NASA-TLX, and MRQ were administered to participants who
completed either the triage analysis task or the escalation analysis task (each
detailed below). In both cases, a pre-task version of the DSSQ was completed prior
to the task-training phase. After completion of their assigned network analyst task,
participants in both experiments completed the NASA-TLX, the DSSQ, and the
MRQ, in that order.

2.3 Triage Analysis Task

The triage analysis task required that participants monitor a simulated IDS display
for the signature of an intrusion event. The display is illustrated in Fig. 1.

Each of the six rows in the IDS display represented one transmission, and each
column represented a different piece of information about that transmission. The
source IP address, source port, destination IP address, and destination port were
each represented by a different column. The display cascaded, so that periodically, a
new transmission appeared at the top of the list, while all other transmissions moved
down one row and the oldest transmission disappeared from the bottom of the list.
The rate of this periodic cascading (event rate) was either 8 or 16 updates per
minute. In both event rates, there were two possible intrusion signatures, one
contained in source information and one contained in destination information.

Fig. 1 Depiction of the simulated IDS display used for the triage analysis task. In this example, an
intrusion signature has just appeared, since the top row and one other row (the second row, in this
case) of the destination information section of the IDS display show the same destination IP
address and destination port. See the definition of an intrusion signature presented below
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If the source information (source IP address, source port) of a newly added
transmission (top row) exactly matched the source information (source IP address,
source port) contained in one of the older, displayed transmissions (lower five
rows), participants were to report the intrusion with a keypress. An alternate
intrusion signature was represented by cases in which newly added (top row)
destination information (IP, port) exactly matched the destination information
associated with one of the older, displayed transmissions. If a participant failed to
detect an intrusion signature within three seconds of it appearing in the IDS, a miss
was recorded. It should be noted that the probability of these signatures was
manipulated, leading to a low intrusion rate (5 % of traffic) or a high intrusion rate
(20 % of traffic). The two intrusion rates were combined factorially with the two
event rates in a between subjects design.

All participants completed a 15-min training version of this triage analysis task.
During training, auditory, verbal feedback was given to inform participants of all
correct detections, misses, and false alarms. After training, participants engaged in
the full experimental triage analysis task, which lasted 40 min. Feedback was
removed during the full triage analysis task.

2.4 Escalation Analysis Task

The escalation analysis task was presented using a recently developed synthetic task
environment, the Cyber Intruder Alert Testbed (CIAT) [8]. Within this platform,
participants took on the role of escalation analysts who were charged with evalu-
ating alerts that had been marked as potentially suspicious by a fictitious triage
analyst. These alerts were depicted within an IDS display. Participants were free to
select and investigate them in any order they chose and to take as much time as
needed, i.e., the task was self-paced. To complete their task, participants were
required to mark each of the alerts as either a “threat” or “not a threat” by pressing
the corresponding button on their task display (see Fig. 2). Participants were
instructed to make this determination by investigating each of the 45 presented
alerts to determine whether it matched the signature of a known threat. To make an
accurate decision, participants needed to collect information from multiple sources
including the IDS display, packet capture software, the network list, and a signa-
tures database. An alert was only to be confirmed as a threat if it matched all of the
elements of the threat signature. With the exception of the response buttons and the
IDS display, a participant was required to use display tabs to toggle between the
multiple information sources within the CIAT display (see Fig. 2).

In 40 out of the 45 alerts, the threat signature was reflected by 4 to 5 elements.
These 40 alerts were meant to provide insight into realistic escalation analysis. Ten
of those 40 alerts matched all signature elements, meaning that they were to be
confirmed as threats. The remaining five alerts were only intended as ‘catch alerts,’
i.e., they were designed to detect participants who were not engaged in the task. All
of these five catch alerts were threats, but the signatures of these threats were
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extremely simple relative to the other 40 trials. The catch alert signatures consisted
of a single element, meaning that they could be accurately confirmed as a threat
with minimal time and effort by any participant who was appropriately invested in
the task. Participants were required to accurately identify at least four of these five
catch alerts for their data to be analyzed.

Before engaging in the escalation analysis task, participants completed a training
phase, which consisted of computerized instruction and practice. The purpose of
this training phase was to familiarize them with the task and the CIAT interface.
Like the full experimental escalation analysis task, the training version was
self-paced. As practice, participants were presented with a list of three alerts. Each
was designed to be unique, but similar to those used in the full escalation task (i.e.,
signatures consisted of 4–5 elements). For the first alert, the researcher demon-
strated and verbally described the process of selecting an alert, investigating an
alert, and making a correct threat determination. For the second alert, participants
completing it were required to verbally describe the completion process as they did
so, and were free to ask the researcher any questions they had. Lastly, the partic-
ipants completed the third alert without any help from the experimenter and were
still required to describe the process aloud while doing so. After completing all
three practice alerts, participants began the full escalation task. On average, the full
task required approximately one hour to complete.

In both the training version and the full, experimental version of the escalation
analysis task, participants received one of two versions of the CIAT display.

Fig. 2 Example of the CIAT interface. Represented in the figure are (1) the intrusion detection
system (IDS), (2) the query and signatures database, (3) the packet capture software, (4) the
network list, and (5) the participant response buttons (i.e., “Not a Threat” and “Threat”). Though
these disparate components appear together in the figure to conserve space, during the experiment,
each of the enumerated elements existed on separate “tabs” in the display, with the exception of the
IDS and the response buttons that appeared below it
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Depending on their assignment to a between-subject condition, participants
received either coordinated displays or uncoordinated displays. In the coordinated
displays condition, selecting an alert in the IDS display automatically selected
information relevant to that alert in each of the CIAT tabs. In the uncoordinated
displays condition, selecting the alert had no effect on the information contained in
the CIAT tabs, meaning that a participant had to perform a manual search of each
information source to find relevant data.

3 Results

Data from each questionnaire (NASA-TLX, MRQ, DSSQ) and each task (triage
analysis, escalation analysis) were analyzed separately. The primary factor of
interest for each questionnaire was subscale. All analyses utilized an alpha of 0.05;
the Box correction was applied to correct violations of the sphericity assumption;
and the Bonferroni correction was used to adjust Type I error rate for post hoc,
multiple comparisons.

The focus of these analyses was evaluating the workload and stress associated
with triage analysis and escalation analysis as a whole. In that regard, we aggre-
gated across all task-related experimental factors: event rate and intrusion proba-
bility for the triage analysis task, coordinated vs uncoordinated displays for the
escalation analysis task.

Only two participants’ data were excluded from analyses. Two participants in
the escalation analysis task failed to identify four of the five catch alerts, indicating
lack of engagement in the task. These participants’ data were excluded, resulting in
a final sample of 44 participants in the escalation analysis sample.

3.1 Workload: NASA-TLX

For each participant, NASA-TLX scores for each of the six subscales were derived
using raw, unweighted ratings, as opposed to ratings weighted by subjective
rankings of subscale importance. In the ANOVA analyses of the NASA-TLX,
subscale was included as a factor with six levels (corresponding to the six items of
the TLX). NASA-TLX scores for each of the subscales and each network analysis
task are presented in Table 1.

Analysis of NASA-TLX scores from the triage analysis task revealed a signif-
icant main effect of subscale, F(3.48, 90.44) = 36.61, p < 0.001, g2

p ¼ 0:59.
Follow-up Bonferroni corrected t-tests revealed that ratings of mental demand
(M = 75.74, SE = 4.25) temporal demand (M = 69.82, SE = 4.99), and effort
(M = 73.52, SE = 4.17) were each greater than ratings for all other subscales
(p < 0.05 in each case), but did not differ significantly from each other (p > 0.05 in
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each case). Scores for mental demand, temporal demand, and effort were all sig-
nificantly greater than 50 (i.e., the midpoint on the scale), as revealed by
one-sample t-tests (p < 0.05). Scores above the midpoint are generally indicative of
substantial workload [6]. As can be seen from Table 1, scores from all other
subscales are below 50, descriptively. The only other notable subscale is frustration
(M = 42.96, SE = 5.48), which was significantly greater than physical demand
(M = 16.67, SE = 3.54).

The analysis of NASA-TLX scores from the escalation analysis task also
revealed a significant main effect of subscale, F(3.76, 161.79) = 116.41, p < 0.001,
g2
p ¼ 0:73. Pairwise comparisons using Bonferroni corrected t-tests revealed that

mental demand (M = 79.55, SE = 2.46) was rated as significantly higher than all
other subscales, p < 0.001 in each case. Effort (M = 67.73, SE = 2.80) was also
rated as a major element in escalation task engagement, second only to mental
demand (p < 0.001) and greater than all other workload subscales (p < 0.001 in
each case). Both mental demand and effort were rated as significantly greater than
50, p < 0.001 in each case.

3.2 Workload: MRQ

Prior to inferential analyses, scores for each MRQ subscale were evaluated sepa-
rately to determine whether each resource was a considerable contributor to task
workload. A resource (subscale) was only considered a notable contributor to task
demand if at least 50 % of participants reported using that resource, i.e., workload
was rated as greater than zero by at least half of the participants in a given network
analysis task. Any subscale that failed to meet this criterion was excluded from
subsequent data analyses. This method is one of two item reduction methods that
are recommended by David Boles, the creator of the MRQ [12]. Mean subscale
scores are presented in Fig. 3 for all subscales that represented a resource that
contributed to task demand for either the triage analysis task or the escalation
analysis task.

Table 1 Mean subscale scores and global score for NASA-TLX ratings in each network analysis
task

Task Subscale

Mental
demand

Physical
demand

Temporal
demand

Performance Effort Frustration Global

Triage 75.74 16.67 69.81 32.96 73.52 42.96 51.94

Analysis (4.25) (3.54) (4.99) (4.97) (4.17) (5.48) (2.73)

Escalation 79.55 12.43 30.30 20.52 67.73 29.73 40.04

Analysis (2.46) (2.24) (3.69) (2.46) (2.80) (3.27) (1.71)

Standard errors are presented in parentheses
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For the triage analysis task, 11 of 17 subscales met the inclusion criterion set by
the item reduction procedure. The global, mean workload across these subscales
was 58.29 (SE = 3.59). These 11 subscales were subjected to further analysis using
a repeated measures ANOVA with a single factor, subscale. This analysis showed
that there were significant differences among mean subscale scores F(5.97,
155.32) = 8.57, p < 0.001, g2

p ¼ 0:248. Pairwise comparisons indicated that triage
analysis demanded significantly more of short term memory, spatial attentive
processing, spatial emergent processing, and visual lexical processing, compared
with other subscales, p < 0.05 in each case. Further, of the 11 subscales that were
considered as notable contributors to the workload of the triage analysis task, only
those four subscales produced demand scores that were significantly above the
midpoint of the scale (i.e., 50; p < 0.05 in each case).

For the escalation analysis task, 9 of 17 subscales met the inclusion criterion.
The included subscales were the same as those included in examination of the triage
analysis task except the spatial concentrative subscale and the visual temporal
subscale did not meet the inclusion criteria for the escalation analysis task. Global,
mean workload for the 9 subscales was 50.37 (SE = 2.98). An ANOVA of these
nine subscales revealed that there were mean differences in demand scores among
subscales, F(5.06, 217.45) = 14.99, p < 0.001, g2

p ¼ 0:258. Pairwise comparisons
indicated that demands for manual processes, short term memory, spatial emergent
processing, and visual lexical processing were greater than demands for other

Fig. 3 Mean MRQ scores for each subscale and each network analysis task. Note that in two
cases, a subscale score was only a significant contributor to workload in triage analysis. For those
two subscales, escalation analysis scores are presented with a dashed border. Error bars are
standard errors. Abbreviations: ‘STM’ = Short Term Memory; ‘S.’ = Spatial; ‘V.’ = Visual
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subscales, p < 0.05 in each case. Moreover, one-sample t-tests revealed that only
the demands for short term memory and visual lexical processing were significantly
greater than the midpoint of the MRQ scale, p < 0.05 in each case.

3.3 Stress: DSSQ

Participant task engagement, distress, and worry scores, i.e., the three factors of the
DSSQ, were computed using the procedure recommended by the developers of the
scale [9], such that raw factor scores were transformed based on extant data rep-
resenting a large normative sample. The result was standardized subscale scores
(M = 0, SD = 1) for pre-task and post-task ratings of each of the three subscales.
These values were used to calculate change scores (post-task minus pre-task) for
each of the subscales, for each task. Mean DSSQ change scores are presented in
Fig. 4 for each subscale and each network analysis task.

After computing change scores, the first step in analyzing data from the triage
analysis task was determining whether the task-induced changes in stress were
significant. To make this determination, change scores for each subscale were
evaluated using separate, one-sample t-tests (versus zero). These analyses indicated
that distress increased, t(26) = 3.70, p = 0.001, and task engagement decreased
during triage analysis t(26) = 2.54, p = 0.017. Worry did not change significantly,
p > 0.05.

Identical analyses were used to evaluate task-induced stress effects in escalation
analysis. These analyses showed that worry decreased, t(43) = 4.19, p < 0.001, and
distress increased during task performance t(43) = 3.22, p = 0.002. However, esca-
lation task performance led to no significant changes in task engagement (p > 0.05).

Fig. 4 Mean change scores for each DSSQ subscale and network analyst task. Error bars
represent standard errors. Note “Engagement” in the figure refers to task engagement
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4 Discussion

The present study was conducted to explore the possibility that different network
analysis tasks may involve different task-related stressors and demands. Past studies
in the cyber domain have utilized aggregated cyber operator samples, as if all
network analysis tasks—or even cyber tasks, in general—are created equal [e.g. 5].
Results of the current study challenge this assumption, suggesting instead that
procedurally distinct network analysis tasks elicit distinctive effects on operator
state.

In terms of task workload, global ratings of task demands from the NASA-TLX
and the MRQ indicated that triage analysis might be more demanding than esca-
lation analysis. A more nuanced examination of the profiles of mental workload for
each task allows for further comparison. Based on the NASA-TLX it appears that
both network analysis tasks require a high degree of mental demand and effort.
Additionally, temporal demand was a driving factor in task workload for triage
analysis, but not for escalation analysis. These results suggest that both network
analysis tasks are cognitively demanding, but triage analysts are further challenged
by the constant flood of incoming network traffic and the pace at which it must be
parsed.

The nature of these tasks was further elucidated by MRQ workload profiles,
which indicated that both tasks recruit a similar set of perceptual, attentional, and
memorial resources. Yet, there are some notable differences in workload profiles
between triage analysis and escalation analysis. Participants in both tasks reported
being taxed by demands upon short term memory and the need to recognize visual
lexical information (e.g., words and digits within the IDS display). Further, both
tasks appear to be similar in that there was a demand for participants to “pick out”
critical visual information from “a highly cluttered or confusing background.”
Despite these similarities, it appears that triage analysis may place greater demands
on multiple spatial processing resources. For example, upon perusal of Fig. 3, it
will be evident that the perceived demand for spatial attention in triage analysis was
approximately 50 % greater than that associated with escalation analysis.

Results of the DSSQ suggest that triage analysis and escalation analysis also
invoke different stress responses. Triage analysis was associated with increased
distress and decreased task engagement, while escalation analysis was associated
with increased distress and decreased worry.

Note that the stress profile for triage analysis was identical to the typical stress
response of vigilance tasks [13]. The NASA-TLX workload profile is also similar to
the typical profiles of fast-paced vigilance tasks, suggesting the possibility that
sustained attention, or vigilance, may play a major role in triage analysis [7]. In
contrast, the self-paced nature of the escalation analysis may allow operators to
manage the task to maintain an optimal level of workload and prevent task-induced
stress [14].

These task-related differences are intriguing, but they should be considered with
caution. The current study included only novice participants, who had no prior
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cyber experience or expertise. In order to ensure the external validity of these
findings and the real-world utility of potential solutions, future research should
include expert analysts.

Although replication is needed, the current findings provide the initial demon-
stration that, though triage and escalation analysts are both engaged in cyber
defense, their tasks result in differentiable workload and stress profiles. This sug-
gests that it may be inappropriate to assume that all network analysts face the same
task-related challenges or that there are universal solutions. Future research should
assess specific needs and challenges associated with different network analyst tasks,
so that human factors solutions can be appropriately tailored to augment cyber
defense capabilities.
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