
Citation: Saeidi, M.; Karwowski, W.;

Farahani, F.V.; Fiok, K.; Hancock, P.A.;

Sawyer, B.D.; Christov-Moore, L.;

Douglas, P.K. Decoding Task-Based

fMRI Data with Graph Neural

Networks, Considering Individual

Differences. Brain Sci. 2022, 12, 1094.

https://doi.org/10.3390/

brainsci12081094

Academic Editor: Valerio Santangelo

Received: 15 June 2022

Accepted: 6 August 2022

Published: 17 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Decoding Task-Based fMRI Data with Graph Neural Networks,
Considering Individual Differences
Maham Saeidi 1,* , Waldemar Karwowski 1 , Farzad V. Farahani 1,2, Krzysztof Fiok 1 , P. A. Hancock 3,
Ben D. Sawyer 1, Leonardo Christov-Moore 4 and Pamela K. Douglas 5

1 Department of Industrial Engineering and Management Systems, University of Central Florida,
Orlando, FL 32816, USA

2 Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
3 Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
4 Institute of Advanced Consciousness Studies, Santa Monica, CA 90403, USA
5 School of Modeling, Simulation, and Training Computer Science, University of Central Florida,

Orlando, FL 32816, USA
* Correspondence: msaeidi@knights.ucf.edu

Abstract: Task fMRI provides an opportunity to analyze the working mechanisms of the human
brain during specific experimental paradigms. Deep learning models have increasingly been applied
for decoding and encoding purposes study to representations in task fMRI data. More recently,
graph neural networks, or neural networks models designed to leverage the properties of graph
representations, have recently shown promise in task fMRI decoding studies. Here, we propose
an end-to-end graph convolutional network (GCN) framework with three convolutional layers to
classify task fMRI data from the Human Connectome Project dataset. We compared the predictive
performance of our GCN model across four of the most widely used node embedding algorithms—
NetMF, RandNE, Node2Vec, and Walklets—to automatically extract the structural properties of the
nodes in the functional graph. The empirical results indicated that our GCN framework accurately
predicted individual differences (0.978 and 0.976) with the NetMF and RandNE embedding methods,
respectively. Furthermore, to assess the effects of individual differences, we tested the classification
performance of the model on sub-datasets divided according to gender and fluid intelligence. Exper-
imental results indicated significant differences in the classification predictions of gender, but not
high/low fluid intelligence fMRI data. Our experiments yielded promising results and demonstrated
the superior ability of our GCN in modeling task fMRI data.

Keywords: task fMRI; brain decoding; classification; graph convolutional network; human
connectome project

1. Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive technology that
provides high spatial resolution in determining the human brain’s responses [1]. Technically,
fMRI estimates the regional brain activity by measuring metabolic changes in blood oxygen
consumption associated with neural activity [2]. Modeling task fMRI data provides an
opportunity to analyze the working mechanism of the human brain during performance of
specific tasks. In task fMRI scanning, time series of the three-dimensional volume of the
brain are acquired within a task block while the participant’s brain actively performs an
explicit task. Pattern classification techniques are frequently applied to task fMRI data to
determine if information is present in a particular brain region in a format the model can
exploit, as in decoding studies. Encoding models can be used to make predictions about
brain representations based on stimuli used in a particular task [3]. These models can also
be applied to predict behavioral responses based on task fMRI [4], or for making group
membership predictions based on graph theoretic features [5].
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Graph neural networks (GNNs) have recently gained interest in the deep learning
community, and have recently been applied to analyze task fMRI [6–11]. GNNs are neural
network-based models that operate on graph-structured data, and have demonstrated
state-of-the-art results in learning graph representations by embedding nodes in a low
dimensional space [12]. Depending on the particular data structure of a graph, the perfor-
mance of embedding methods in extracting the structural properties of graph nodes varies;
thus, classification algorithms may perform differently according to the node embedding
method used [13]. Although previous studies have attempted to increase the classification
performance of task fMRI data by using various node embedding methods [8], less effort
has been directed toward inferring how various node embeddings perform differently on
classification task fMRI data. In this study, we used task fMRI data from the Human Connec-
tome Project (HCP) dataset [14] to compare and adjudicate amongst embedding methods.
Herein, we propose an end-to-end graph convolutional network (GCN) framework to
classify task-evoked fMRI data. We conducted a series of experiments to evaluate the
model’s classification performance by using four well-known node embedding algorithms:
NetMF, RandNE, Node2Vec, and Walklets (Section 3.4).

Brain connectivity varies considerably amongst individuals [15–19], and even within
individuals across time [20]. A number of studies have noted structural and functional
connectivity differences across gender [21], developmental populations [5], intelligence [22],
across the lifespan [23], and even level of empathic concern [24]. On the basis of such re-
search indicating a close link between individual variability and brain connectivity derived
measures, we aimed to examine the effects of individual differences (i.e., gender and fluid
intelligence (gF)) on the classification performance of the proposed GCN model. For this
purpose, we performed extensive experiments on four sub-datasets: gender-associated sub-
datasets (female and male) and gF score-associated sub-datasets (sub-datasets associated
with individuals with gF scores lower than the median value, denoted LM-gF, or higher
than the median value, denoted HM-gF). We assessed significant changes in classification
performance across each dataset. In general, our contributions through this work are
summarized below:

• We propose an end-to-end GCN framework to classify task-evoked fMRI data. The
objective is to examine the performance of various node embeddings to generate
topological embeddings of the graph’s nodes. To our knowledge, this is the first
investigation of different node embeddings on task fMRI classification performance.
The code is available at https://github.com/krzysztoffiok/gnn-classification-pipeline,
accessed on 20 February 2022.

• We demonstrate the performance of the proposed GCN framework according to
individual differences (i.e., gender and fluid intelligence). To this end, we constructed
four small sub-datasets of gender and gF score (LM-gF/HM-gF) with replacement.

This paper is organized as follows. In Section 2, we describe the background of the
work. Section 3 describes our task fMRI data, the GCN architecture, and performance
evaluation. In Section 4, we present the results from our experiments, followed by a
discussion of our findings, the limitations of the work, and future directions. We end the
current work with concluding remarks in Section 6.

2. Background

Over the past several decades, a variety of computational methods have been pro-
posed to analyze fMRI time series data, such as the generalized linear model (GLM) [25,26],
sparse dictionary learning [27–30], and blind source separation techniques including in-
dependent component analysis [31–34], non-negative matrix factorization [35], and tensor
decomposition [36,37]. While useful, these techniques are either model free, or impose a
particular inductive bias in the model. As such, their architectures do not resemble the
structural or functional information processing in the human brain, limiting their capability
of being used as brain computational models [38].

https://github.com/krzysztoffiok/gnn-classification-pipeline
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In the past several years, a growing body of literature has applied deep learning (DL)
algorithms to fMRI data for decoding and encoding purposes. DL models leverage only a
small subset of the dynamic capabilities of biological neurons, yet are functionally inspired
by neurobiology. In DL methods, rather than using manual features, which are usually
based on expert domain knowledge and heuristics [39], high level complex features can be
automatically extracted from the original fMRI data, thus providing meaningful informa-
tion to improve the performance of classification models. For example, Huang et al. [40]
proposed a deep neural network model, consisting of both convolutional and recurrent
layers, that automatically extracts spatial and temporal features of fMRI data. Their convo-
lutional recurrent neural network model was used for the seven-class classification task,
and the experimental results on the HCP dataset achieved an average accuracy perfor-
mance of 94.3%. Wang et al. [41] applied a DL classifier with five convolutional layers and
two fully connected layers on a large subset of task fMRI data from the HCP dataset and
obtained an average accuracy of 93.7%.

Among DL models, convolutional autoencoders [42–44], recurrent autoencoders [45,46],
and deep belief networks [47–49] have shown a superior ability to decode fMRI data.
Huang et al. have developed a deep convolutional autoencoder to model fMRI data [42,43];
Zhao and colleagues used a spatio-temporal convolutional neural network to obtain both
spatial and temporal features of functional networks [44]; Wang et al. have applied a deep
sparse recurrent neural network on task fMRI data that has shown promising performance
in extracting the temporal dependencies of input fMRI volumes [45]; and a deep belief
network with a restricted Boltzmann machine [47] has been used to identify networks in
fMRI data. Similarly, Jang et al. applied the deep belief network from [47] to initialize
the weights of a fully connected deep learning architecture [48]. Despite the advances
made by these methods, the DL models are yet to reach their full potential in the functional
neuroimaging community due to the high dimensionality of the data and limited training
data [50].

Graph-based network analyses capture information about the topological architecture
of human brain networks [20]. Therefore, GNNs represent an attractive new tool for model-
ing brain information processing given that they are biologically inspired and leverage the
hierarchical computing power from deep learning neural network models [51–53]. These
models have been applied for fMRI decoding purposes using spectral-based GCN [6].
Li et al. [8] extended this work by proposing the BrainGNN framework with ROI-aware
graph convolutional layers and ROI-selection pooling layers. These two types of layers
were used to extract topological features of fMRI data and highlight the important nodes
of the brain’s graph for prediction, respectively. The framework has been used to map
regional and cross-regional functional activation patterns for decoding cognitive states in
the HCP S1200 dataset. Furthermore, Kim et al. [10] considered the dynamic characteristics
of the functional connectivity network and proposed the Spatio-Temporal Attention Graph
Isomorphism Network for learning dynamic graph representation of the brain connectome
with spatio-temporal attention.

3. Materials and Methods

According to the model used in [8], we applied a GCN framework for learning hi-
erarchical representations of brain graphs to perform the node classification task. The
topological and spatial feature vectors of brain functional graph nodes can also be auto-
matically extracted by using node embedding methods. In this section, we first introduce
the concept of convolutional operation on graph spectral domains, on the basis of Fourier
transform and graph Laplacian. We then describe our proposed GCN model and the loss
function that we intend to minimize. Finally, we present the dataset used as well as the
brain network construction and feature extraction for graph nodes.
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3.1. fMRI Dataset and Preprocessing

We obtained task fMRI data for 302 participants, consisting of 164 women and 138
men (22–35 years, mean = 28.7± 3.6) from the HCP 1200 Subject Release (S1200) [14]. HCP
participants were randomly drawn from a population of healthy individuals, and fMRI
data was collected while subjects performed seven different tasks—emotion, gambling,
working memory, language, relational, social, and motor [26]. We used a subset of the
HCP data collected at a single site, Washington University, to obviate the need for data
harmonization [54]. Data were collected at 3 Tesla with TR = 0.72 s, TE = 33.1 msec, flip
angle = 52 degree, FOV = 208 × 180 mm, and voxel size = 2.0 mm isotropic with opposite
phase encoding directions (left-to-right and right-to-left). For further details, see [14].

To perform our experiments aimed at evaluation of the influence of individual differ-
ences, we considered two categories of task fMRI data: gender and fluid intelligence (gF).
The first category consisted of two datasets in which task fMRI data for 164 and 138 par-
ticipants were assigned to each sub-dataset according to gender. In the second category,
we sorted gF scores of 302 participants in descending order and divided the dataset of
302 participants into two sub-datasets, LM-gF and HM-gF, of participants with gF scores
lower than the median value (gF score < 18) and with gF score higher than the median
value (gF score ≥ 18), respectively. Consequently, a total of 144 and 158 participants’ task
fMRI data were assigned to the LM-gF and HM-gF sub-datasets, respectively. Table 1
presents the demographics and participant distribution of the four defined sub-datasets.

Table 1. Demographics and participant distribution results.

Groups Number of Participants Age (Mean ± SD) gF-Score (Mean ± SD)

Female 164 29.2 ± 3.6 -
Male 138 28.1 ± 3.6 -

LM-gF F = 91, M = 53 29.1 ± 3.6 12.5 ± 3.4
HM-gF F = 83, M = 75 28.4 ± 3.6 20.6 ± 1.7

Abbreviations: LM-gF, low median-gF score; HM-gF, high median-gF score; F, female; M, male.

The preprocessing of the task fMRI volume time-series was performed by the HCP con-
sortium, as previously described [55]. The preprocessing pipeline included artifact removal
and gradient distortion correction, motion correction, and registration to the standard Mon-
treal Neurological Institute space with a DARTEL and voxel size of 2× 2× 2 mm3. Spatial
smoothing and activation map generation were performed with a GLM implemented in
FSL’s FILM (FMRIB’s Improved Linear Model with autocorrelation) [56]. More details
regarding the HCP preprocessing pipeline can be found in Barch et al. [26].

3.2. Graph Convolutional Network: Spectral
3.2.1. Notation

We used the basic notions described in [57]. A graph is defined as G = (V, E) that
consists of the set of nodes {v1, v2, . . . , vn} and set of edges such that eij =

(
vi , vj

)
∈ E

and E ⊆ V ×V. An edge e has two endpoints, vi and vj, that are said to be joined by e. In
this case, these two nodes are adjacent. A graph can be either directed or undirected. With
an undirected graph, edges have no orientation. In contrast to undirected graphs, directed
graphs are the set of nodes connected by edges that have a direction associated with them.
Furthermore, a graph is a weighted graph if a weight is assigned to each edge. These
weights quantify the degree of interaction between the nodes or the volume of exchange.

Definition 1 (adjacency matrix). The adjacency matrix A for a graph G with n-nodes is an n× n
matrix representation with Aij = 1 if direct connections exist between viand vj, and Aij = 0 if no
direct connections exist. If the graph is weighted, the entry of the adjacency matrix is Aij > 0 if(
vi, vj

)
∈ E and Aij = 0, otherwise.
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Definition 2 (feature matrix). The node feature matrix X ∈ RV×d, where V is the number of
nodes in the graph, and d is the number of node features, is a matrix with xi ∈ Rd representing
the d-dimensional feature vector of the node v. Similarly, the edge feature matrix Xe ∈ RM×p is a
matrix with Xe

vi ,vj
∈ Rp representing the p-dimensional feature vector of the edge eij.

Definition 3 (Laplacian matrix). The Laplacian matrix (or graph Laplacian) L ∈ RN×N is
defined as L = D − A, where D is the degree matrix, Dij = ∑n

j=1 Aij, and A is the adjacency
matrix of the unweighted graph. Similarly, for a weighted graph, L = D −W, where W is a
weighted adjacent matrix. The symmetric normalized Laplacian matrix can be defined as Lsym =

I − D−
1
2 AD−

1
2 , where I is the identity matrix.

3.2.2. Spectral-Based GCN

Spectral GCNs use the Laplacian matrix to compute the eigen-decomposition of the
graph Laplacian in the Fourier domain. Let Lsym be the symmetric normalized Laplacian
matrix of graph G. Lsym can be decomposed into Lsym = UΛUT , where
U = (U0, U1, . . . , Un−1) ∈ Rn×n is the eigenvector matrix, and Λ is the diagonal ma-
trix of eigenvalues, Λ = diag(λ1, λ2, . . . , λn). In graph signal processing, node features
are mapped to feature vectors (i.e., x0, , . . . xn−1), which may be formed as a feature vector
of all nodes of a graph, X ∈ Rn. The graph Fourier transform to a signal X is defined as
X̂ = UTX, and the inverse graph Fourier transform is defined as X = UX̂. The graph
convolution operation of X in the Fourier domain is defined as follows:

X× g = U
((

UT g
)
�
(

UTX
))

(1)

where × represents convolution operation, � represents the pointwise product, and g ∈
RN represents the learnable parameters of the graph convolutional kernel. By defining
gθ = diag

(
UT g

)
as a spectral filter in the spectral domain, the graph convolution operation

can be simply defined as follows:

X× gθ = Ugθ(Λ)UTX (2)

Equation (2) was used for the first spectral network proposed [58]. However, this
operation was computationally expensive because of multiplication eigenvector matrix U,
which is a full matrix with n Fourier functions. To avoid the quadratic complexity, Deffer-
rard et al. [59] have proposed ChebNet model, which avoids the eigen-decomposition by
using a learning function of the Laplacian. The ChebNet model uses Chebyshev polynomi-
als of the diagonal matrix of eigenvalues to estimate the filter gθ as shown below:

gθ =
K

∑
i=0

θiTk(
∼
Λ) (3)

where
∼
Λ = 2Λ/λmax − IN , and Λ ∈ [−1, 1]. The model uses a Chebyshev polynomial

for recursive calculation as Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1 and T1(x) = x.
Therefore, the definition of the convolution of the graph signal x with a filter gθ is as
shown below:

X× gθ = U(
K

∑
i=0

θiTi(L̃))UTX (4)

where
∼
L = 2Lsym/λmax − IN , and maps the eigenvalues from [0, λmax ] to [−1, 1] [60].

The filters defined by ChebNet are unstable for localizing frequency bands of interest,
which are essentially the graph communities. To improve the above-mentioned ChebNet
model and reduce the overfitting problem [61], Kipf and Welling [62] have proposed
the CayleyNet model to capture narrow frequency bands by using Cayley polynomials.
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ChebNet assumes a linear function with respect to K = 1 and λmax = 2, which results in a
simplification of Equation (4) as shown below:

X× gθ = f (D̃−
1
2 ÃD̃−

1
2 XΘ) (5)

where Ã = I + A, is an adjusted adjacency matrix A, D̃ij = ∑ jÃij, f is the activation
function, and Θ is a matrix of filter parameters.

3.3. Functional Graph

The raw task fMRI data were preprocessed through the HCP minimal preprocessing
pipeline [55] and denoised by using ICA-FIX [63] to remove spatial artifacts and to perform
motion correction. Furthermore, we used a large-scale multimodal brain atlas to parcellate
the brain regions into 360 anatomical areas by using HCP Multi-Modal Parcellation, which is
based on a combination of cortical architecture, function, connectivity, and topography [64].
By parcellation, we define regions of interest that represent graph nodes for brain network
construction. Theoretically, the construction of a functional graph involves two steps.
Herein, we first averaged the time series of all voxels in the region. Then we computed the
functional connectivity between each pair of averaged time series of brain region through
Pearson’s correlation coefficient. We used Fisher’s z transformation to normalized r values
to improve the normality, and obtained a 360× 360 symmetric matrix A (adjacency matrix)
for each participant.

3.4. Feature Engineering and Node Embedding Algorithms

Features from averaged time series of brain regions were extracted by using Time
Series Feature Extraction on basis of Scalable Hypothesis tests (tsfresh), an efficient and scal-
able feature extraction algorithm for time series based on a Python package [65]. The tsfresh
algorithm integrates the components from the hypothesis tests with the feature significance
testing on the basis of the FRESH algorithm [66]. Each generated feature vector is indepen-
dently assessed to identify its significance for the given target by quantifying p-values and is
further evaluated through the Benjamini–Yekutieli procedure [67] to decide which features
to keep. The features extracted by tsfresh consist of both basic and advanced characteristics
of the time series, and a complete list of features along with their mathematical descriptions
can be found in reference [66]. We selected a minimum set of relevant statistical features
to prepare feature representations for each node as follows: “absolute_sum_of_changes”,
“benford_correlation”, “c3” (i.e., a measure of non-linearity in the time series), “cid_ce”
(i.e., a measure of complexity in the time series), “longest_strike_above_mean”, “variance”,
“standard deviation”, “skewness”, and “quantile” (i.e., 0.25 quantile).

In addition to the statistical features obtained through the tsfresh algorithm, node
embeddings were applied to automatically extract node attributes in graphs. Node embed-
ding algorithms project nodes into low-dimensional vectors, such that nodes with similar
topological structures are in proximity in the embedding space [68]. We used the Python
framework Karate Club [69], which consists of at least 30 graph mining algorithms, for
node and graph embedding. We compared the performance of four state-of-the-art node
embedding algorithms: Walklets [70] and Node2Vec [71], which use sampled random
walks to make the node embeddings; NetMF [72], a factorization-based model; and the
recently proposed RandNE [73], which is based on a Gaussian random projection approach
with the default dimension ordering.

Walklets. In this method, instead of the random walk process used in DeepWalk [74],
sample node neighborhoods are approximated by skipping over nodes in each short
random walk. Then the set of results of multiple skip lengths is used to train the model [13].

Node2Vec. This method is a modification of DeepWalk introducing parameters p
and q to smoothly interpolate between breadth-first sampling and depth-first sampling.
Parameter p controls the likelihood of immediately revisiting a node in the walk, whereas
parameter q allows the search to differentiate between “inward” and “outward” nodes. In
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Node2Vec, a vector representation of a node is computed on the basis of the second order
random walks in the graph, and the core assumption is that Node2Vec’s sampling strategy
is based on a mixture of breadth-first sampling and depth-first sampling suited for struc-
tural equivalence (i.e., similar roles of nodes) and homophily (i.e., network community),
respectively [75].

NetMF. This method is a matrix factorization-based algorithm based on the connection
between DeepWalk’s implicit matrix and graph Laplacians [73]. NetMF uses a small subset
of nodes and extracts embedding vectors by approximating the proximity between nodes
and the subset with the help of graph Laplacians [76].

RandNE. This method of iterative random projection network embedding preserves
high order proximity between nodes by using a Gaussian random projection method while
reducing the time complexity [73].

3.5. Proposed Model
3.5.1. Modular Architecture

Our proposed model was developed by using PyTorch [77] and PyTorch Geomet-
ric [78]. The model takes a time series of fMRI volumes as input, in which each time series
is a 2D matrix X of size T × N, where T is the number of time steps, and N is the number
of brain regions. The tsfresh algorithm was used for statistical feature extraction for each
node, and then high-level node features associated with each node were extracted with
node embedding methods. The overall GCN model architecture for task fMRI classification
is summarized in Figure 1.

The GCN model consists of three Conv layers with 92 neurons per layer. The Rectified
Linear Unit (ReLU) and batch normalization layers are applied between each Conv layer to
accelerate the convergence and enhance stability, and dropout layers are added after each
Conv layer to reduce the inherent unnecessary complexity and redundant computation
of our multilayer GCN model. Then a global mean pooling layer is applied to calculate
the final graph representation vector. We performed experiments on the same computing
machine equipped with a single NVIDIA Tesla T4 24 GB RAM GPU.

3.5.2. Training and Testing

This study used five-fold stratified cross-validation within a training/validation/test
setup. Four-fifths of the available data were allocated to a training set within each fold. The
remaining one-fifth of the data were partitioned with a 60:40 ratio into a validation set and
a final test set. The hyperparameter search consisted of a grid of learning rate, dropout, and
weight decay values. The model with the lowest loss in the validation set was considered
the best model for the final test. The following ideal parameters were used: learning rate:
0.001, dropout: 0.65, and weight decay: 0.0. Furthermore, because batch size is among the
most important hyperparameters to tune, we considered a set of values of batch sizes. The
batch sizes used in all experiments were B = [16, 32, 48, 64] over 100 epochs, all using
the Adam optimizer and reducing the learning rate on a plateau with a patience of 10.
Furthermore, cross-entropy loss was used for the optimization function.

3.5.3. Evaluation Metrics

The metrics used for comparison embedding methods and evaluation of classification
performance included accuracy, balanced accuracy, F1 scores (macro, micro, and weighted),
Matthews correlation coefficient (MCC), precision, and recall. F1 macro and MCC have
been widely considered as metrics to evaluate imbalanced datasets in which all classes are
weighted equally [79,80]. Therefore, we applied accuracy, F1 macro, and MCC for further
node embedding method comparisons and evaluation of GCN model performance. For
statistical analysis, we used a significance threshold of 0.05. We also used the Shapiro–
Wilk normality test [81] followed by the t-test to evaluate the statistical significance of the
model’s classification performance in different scenarios.
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Figure 1. Overview of our Graph Convolutional Network (GCN) model for task fMRI classification.
After acquisition of the raw task fMRI data and identification of the brain’s divisions into various
parcels, several time courses of each parcel were extracted (A) to create the functional connectivity
matrix. To reduce the complexity of the graph, a threshold was applied to the connectivity matrix (B)
and transferred to a graph. The initial representation of each node was extracted by using the FRESH
algorithm and node embedding methods (C). Finally, the feature vectors were used to perform the
classification task with the proposed GCN framework including three Conv layers followed by a
dropout layer after each Conv layer (D).

4. Results

In this section, the experimental results are presented for the GCN model implemen-
tation and classification performance in different scenarios. Furthermore, the detailed
information regarding the evaluation of node embeddings in the context of task fMRI
decoding concerning gender and gF score differences is provided. Finally, we implemented
classic univariate statistics to determine whether the difference in classification performance
was statistically significant.

4.1. Classification of Task fMRI Data

The first set of results included the evaluation of our proposed GCN framework
to classify which task the subject was performing during fMRI (7 classes) across node
embedding techniques. The experiment was performed by using task fMRI data from
the 302 participants, and the framework was set up by application of the four defined
node embeddings regarding different batch sizes during training. The results are shown in
Table 2. Table 2 illustrated that the RandNE and NetMF embedding methods outperformed
the DeepWalk methods (Node2Vec and Walklets). This result might have been because
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DeepWalk-based methods require many sampled node neighborhoods to create node
embedding vectors [82]. The F1 macro scores for RandNE and NetMF revealed similar
performance across the GCN framework, and application of different batch sizes had a
minor effect on the classification performance.

Table 2. Two-factor performance comparison on predicting experimental task, taking into account the
influence of node embedding methods and batch sizes for the task fMRI classification. The training
processes were set with 100 epochs, 10 step patience for early stopping, and learning rate = 0.001 for
Adam. The proposed GCN model showed impressive results with both RandNE and NetMF node
embedding methods. Classification performance values for 302 participants’ task fMRI data were in
the range of 94% to 98%. Bold values represent the best classification performance obtained for each
batch size.

Batch Size Node Embeddings
Metrics

Accuracy F1 Macro MCC

16

Walklets 0.886 0.89 0.867
Node2Vec 0.854 0.863 0.831
RandNE 0.939 0.941 0.928
NetMF 0.933 0.936 0.921

32

Walklets 0.911 0.915 0.895
Node2Vec 0.873 0.886 0.854
RandNE 0.969 0.97 0.954
NetMF 0.974 0.976 0.97

48

Walklets 0.915 0.92 0.901
Node2Vec 0.898 0.9 0.882
RandNE 0.971 0.973 0.966
NetMF 0.976 0.977 0.971

64

Walklets 0.932 0.936 0.922
Node2Vec 0.902 0.908 0.886
RandNE 0.975 0.976 0.971
NetMF 0.977 0.978 0.974

Figure 2 illustrates the effect of batch size on classification performance. As the number
of batch sizes increased from 16 to 64, the F1 macro score and MCC increased. We also
observed that using a batch size of 64 achieved superior results if any node embeddings
were selected. However, our GCN model showed the best classification performance with
NetMF when a batch size of 64 was chosen. We set up our GCN model and obtained the
confusion matrix for task fMRI classification after the training step, as shown in Figure 3.
The normalized confusion matrix indicated that the top confusions were between (1) the
social and motor tasks and (2) the gambling and social tasks.

Performance Comparison

We compared the proposed GCN model with Logistic Regression (LR) that used L2
regularization, as our baseline model, to prove if the classification performance represented
a noticeable improvement over the traditional machine learning model. LR works well
as a baseline model since it is relatively easy to implement. The use of regularization
prevents overfitting of the task fMRI data, so that the model features are shrunk towards
zero and perform feature selection automatically. We evaluated the same brain decoding
tasks and ran LR on our task fMRI dataset, splitting it into the train, validation, and test
sets. To tune the regularization parameter, we used a range of values and perform a 5-fold
cross-validation to achieve the optimal regularization parameter of 0.1. The result of L2-
regularized LR showed a lower prediction accuracy in the seven-class classification task
(97.7% vs. 86.4%, respectively, for GCN and LR with L2 regularization).
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Figure 2. F1 macro (A) and MCC (B) comparison of the GCN model, taking into account the influence
of node embedding methods and batch sizes for the task fMRI classification task, by using the
302 participants’ fMRI data.

Figure 3. Confusion matrix of the GCN classification results on the 302 participants’ task fMRI data,
normalized to the seven tasks in the five-fold cross-validation. The top two confusions were caused
by the social task versus motor task and the gambling task versus social task. The F1 macro and MCC
of classification were 0.977 and 0.974, respectively.

4.2. Effects of Group Membership on Classification

We performed experiments to evaluate the effects of gender and gF score on classifica-
tion performance by using task fMRI data. The experiments were performed separately on
the datasets described in Section 3.1. We applied the proposed GCN framework with the
same hyperparameters above for all classification experiments.
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4.2.1. Gender Predictions

Classification. We first assessed the predictive performance of our model on predicting
gender. The classification performance of the GCN model was evaluated across the four
node embedding methods, and batch sizes were varied during training (Table 3). Several
observations were made. First, we observed that the average F1 macro of the classifier
on both sub-datasets ranged from 79.5% to 97.9%. Second, the GCN model achieved the
best classification performance with NetMF for both sub-datasets. Third, the GCN model
was sensitive to the choice of batch size, such that the best performance was obtained with
a batch size of 64 for male and female sub-datasets. Similar trends were observed in the
performance of the GCN model for MCC in Figure 4. For MCC, the model performance
across both sub-datasets ranged from 82% to 97% with batch sizes of 48 and 64, respectively.

Table 3. Two-factor performance comparison, taking into account the influence of node embedding
methods and batch sizes in the GCN model, by using both the female and the male fMRI data. Bold
values represent the best classification performance obtained for each batch size.

Batch Size Node Embeddings

Female Dataset Male Dataset

Metrics Metrics

Accuracy F1 Macro MCC Accuracy F1 Macro MCC

16

Walklets 0.881 0.882 0.862 0.849 0.85 0.823
Node2Vec 0.792 0.795 0.764 0.841 0.845 0.817
RandNE 0.916 0.916 0.902 0.907 0.909 0.891
NetMF 0.927 0.928 0.915 0.908 0.911 0.892

32

Walklets 0.919 0.919 0.905 0.879 0.882 0.859
Node2Vec 0.835 0.837 0.807 0.878 0.879 0.856
RandNE 0.938 0.939 0.927 0.949 0.951 0.94
NetMF 0.959 0.959 0.952 0.939 0.941 0.928

48

Walklets 0.931 0.932 0.92 0.887 0.889 0.862
Node2Vec 0.871 0.869 0.851 0.852 0.857 0.827
RandNE 0.952 0.952 0.944 0.955 0.957 0.947
NetMF 0.967 0.967 0.961 0.962 0.964 0.953

64

Walklets 0.928 0.928 0.916 0.871 0.874 0.844
Node2Vec 0.859 0.861 0.837 0.845 0.849 0.817
RandNE 0.971 0.972 0.966 0.958 0.961 0.951
NetMF 0.979 0.979 0.974 0.962 0.965 0.953

Figure 4. MCC comparison of the GCN model, taking into account the effects of node embedding
methods and batch sizes, by using female task fMRI data (A) and male task fMRI data (B).
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Statistical analysis concerning MCC. According to the results of our model applied
independently to female and male sub-datasets, the proposed GCN model had the best
classification performance when NetMF was the node embedding method, and the batch
size of 64 was selected during training. We set up the GCN model with NetMF and
trained it with a batch size of 64, by using a learning rate of 0.001 for 100 epochs to classify
task fMRI data for each sub-dataset separately. This process was performed iteratively a
total of 35 times, and related MCC values were used to assess the statistical significance
of the differences in classification performance. Figure 5A represents the results of this
process. The GCN model performed relatively similarly, whereas each run showed varying
performance between two sub-datasets.

Figure 5. Box plots of the classification performance of the GCN model in 35 independent runs,
by using gender sub-datasets (A) and fluid intelligence sub-datasets (B). Significant differences in
classification performance of task fMRI data were observed between female and male data, but not
between high and low fluid intelligence data.

To perform statistical significance testing, we used the Shapiro–Wilk normality test
to assess normality. After assessing the statistical significance of the difference between
classification performance of two sub-datasets (i.e., female and male), we performed a
t-test, which indicated a significant difference (p < 0.00001). The null hypothesis for this
test was that the mean of classification performance for two sub-datasets was identical.
Together, these results revealed that differences between the male and female task fMRI
data were significant, such that classification was more accurate for of female than male
task fMRI data.

4.2.2. Fluid Intelligence Level Discrepancy

Classification. We evaluated the gF-score through the same procedures used for
assessment of the influence of gender differences on classification task fMRI data. We
set up the model and independently performed classification experiments on two sub-
datasets: LM-gF and HM-gF. Table 4 shows the model’s performance regarding defined
node embedding methods after training with a batch size range from 16 to 64 for LM-gF and
HM-gF. Correspondingly, Figure 6 represents the visualization of the model’s performance
for various node embeddings for MCC. The x-axis in the figures shows the batch sizes.
The GCN classification showed high performance on LM-gF and HM-gF sub-datasets
with RandNE and NetMF node embedding methods, which exhibited similar trends. In
addition, the results indicated a change in performance of the model when the size of the
batch increased from 16 to 64. The most striking observation was that for both sub-datasets,
classification performance with RandNE achieved the best MCC.
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Table 4. Two-factor performance comparisons, taking into account the influence of node embedding
methods and batch sizes in the GCN model, by using both LM-gF and HM-gF task fMRI data. Bold
values represent the best classification performance obtained for each batch size.

Batch Size Node Embeddings
LM-gF Dataset HM-gF Dataset

Metrics Metrics

Accuracy F1 Macro MCC Accuracy F1 Macro MCC

16

Walklets 0.869 0.873 0.847 0.876 0.876 0.855
Node2Vec 0.895 0.896 0.877 0.876 0.878 0.855
RandNE 0.936 0.937 0.925 0.945 0.944 0.936
NetMF 0.906 0.908 0.89 0.921 0.921 0.909

32

Walklets 0.899 0.902 0.882 0.901 0.901 0.883
Node2Vec 0.891 0.893 0.869 0.92 0.92 0.907
RandNE 0.977 0.977 0.973 0.98 0.979 0.975
NetMF 0.93 0.93 0.918 0.942 0.942 0.932

48

Walklets 0.908 0.91 0.891 0.92 0.919 0.906
Node2Vec 0.9 0.902 0.883 0.915 0.915 0.901
RandNE 0.991 0.991 0.989 0.988 0.988 0.983
NetMF 0.934 0.934 0.922 0.948 0.947 0.939

64

Walklets 0.899 0.901 0.881 0.92 0.918 0.907
Node2Vec 0.901 0.903 0.885 0.906 0.905 0.891
RandNE 0.991 0.991 0.99 0.988 0.988 0.986
NetMF 0.936 0.938 0.925 0.944 0.943 0.935

Figure 6. MCC comparison of the GCN model, taking into account the effects of node embedding
methods and batch sizes, by using LM-gF task fMRI data (A) and HM-gF task fMRI data (B).

Statistical analysis concerning MCC. To assess the influence of individuals’ gF-scores
on the classification performance, we conducted the same procedure as the previous
scenario for gender differences. However, we found that the GCN model had the best
classification performance when RandNE was used as the node embedding method. Simi-
larly, the model was set up and trained with a batch size of 48 and a learning rate of 0.001
for 100 epochs to classify task fMRI data by using LM-gF and HM-gF. We obtained two
groups of values indicating the accuracy performance (i.e., MCC) of the classification model
in different sub-datasets (Figure 5B). The Shapiro–Wilk normality test was performed to
assess normality, and a t-test was used to assess the statistical significance of the differences
in classification performance. The difference was found to be non-significant (p = 0.604),
at p < 0.05. Therefore, the accuracy performance of classification task fMRI data for par-
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ticipants with lower and higher fluid intelligence was comparable. Thus, individuals’ gF
scores do not affect task fMRI classification performance.

5. Discussion
5.1. Overview

In this study, we developed a GCN based model for classifying task fMRI data, or
graph-structured data with associated nodal attributes. GCNs can aggregate higher-order
information in “neighborhoods” from graph nodes representing regions of interest in the
brain, and edges representing the functional connectivity [83–86]. Our study achieved an
accuracy of 97.7% in a seven-class classification task, thus demonstrating a competitive
classification performance for brain state decoding, with respect to those recently reported
across task fMRI data by using the HCP dataset [8,40,41]. The comparisons of our multilayer
GCN model with deep neural networks illustrate that node embedded features achieved
better results than automatic feature extraction in DL. Our proposed method is clearly
better than [40,41] that applied deep neural network models which obtained classification
performances of 94.3% and 93.7%, respectively. Inspired by reference [8], our proposed
model included three Conv layers, in which we first implemented several node embedding
methods to extract the topological features of nodes and defined node weight. Then the
first Conv layer was fed by using different node embedding weights instead of using the
same weights for all nodes. To this end, we tested four node embeddings (i.e., NetMF,
RandNE, Node2Vec, and Walklets) and observed that our GCN model using NetMF and
RandNE tended to yield the best results for group membership classifying based on task
fMRI data.

Furthermore, our findings confirmed the importance of selecting a proper node em-
bedding method to extract topological features of graph nodes before feeding the GCN
model, in agreement with previous research detecting influenza-like symptoms with a
GNN model [82].

5.2. Effects of Individual Differences

We examined the effects of individual differences on task fMRI classification in terms
of the gender and gF score discrepancy. With respect to gender differences, the performance
of the proposed GCN model was tested on two sub-datasets (female/male) by consider-
ing four node embedding methods. The same procedure was applied on gF-associated
sub-datasets (LM-gF/HM-gF). We observed a significant difference in task fMRI classifica-
tion performance between gender sub-datasets. However, no significant difference was
observed in classification performance at a 95% confidence interval, because the p-value
was greater than 0.05.

5.3. Effects of Batch Size

Training a DL model involves selecting a large set of hyperparameters, among which
batch size is important [87]. Batch size defines the number of training samples used in
one iteration to update the internal network parameters. To achieve the best accuracy
performance of the GCN model associated with the batch size values, we chose a sequence
of batch sizes of 16, 32, 48, and 64, and applied GCN architectures to each dataset. This
approach allowed us to obtain the best classification performance for each experiment. The
trend of the batch size change influenced the classification performance for all considered
datasets. The worst classification performance values were obtained with a batch size of 16,
and the best results were achieved with batch sizes of 48 and 64.

5.4. Limitations and Future Work

Our current study has several limitations that should be considered in future research.
Although this study examined several node embedding methods to represent the graph
nodes as low dimensional vectors, we disregarded the influence of the dimensionality of
the node embeddings. Although finding the optimal dimension for embedding methods is
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challenging, some studies have applied several embedding dimensions on various datasets
and achieved varying performance [13,88]. Therefore, the node embedding method must be
customized to our dataset in future work. Furthermore, although batch size is an important
hyperparameter to be considered in training a DL model [87], and we refitted our GCN
model with different batch sizes and analyzed the effects of the change in batch size on
classification performance, more hyperparameters should be studied, such as the number of
convolutional layers, pooling ratio, and different readout operations. Finally, we analyzed
only the task fMRI dataset for 302 participants and concluded that gender differences can
affect classification performance. However, the ability to generalize our findings should be
studied over a large number of participants and evaluated using our decoding model for
experimental conditions under each task fMRI.

6. Conclusions

We proposed a GCN model to decode task fMRI data from the HCP dataset. Four
node embedding methods—NetMF, RandNE, Node2Vec, and Walklets—were used to
extract the topological features of graph nodes. We compared the performance of the model
with different node embeddings through experiments and assessed classification accuracy.
Our GCN model not only performs better on classification than alternative methods but
also offered a relatively simple GCN architecture in which dropout layers reduced the
redundant computation of the model. We further examined whether individual differences
affect task fMRI data classification performance. Several conclusions were drawn. First,
the overall task fMRI classification of the GCN model resulted in an accuracy, F1 macro
and MCC of 0.977, 0.978 and 0.974, respectively. Second, the most robust node embedding
methods for task fMRI data were NetMF and RandNE, whereas the least robust node
embedding method was Node2Vec. Third, the influence of gender differences on task fMRI
classification performance was significant, whereas no significant difference was observed
between gF score categories.

In general, the method of this study provides a robust graph neural network-based
data analysis method and examined various node embedding methods to provide a more
effective solution for analyzing task fMRI data. Developing methods to test and validate
saliency methods used for explainable artificial intelligence is still an active area of re-
search [89]. However, as these techniques mature, GCNs may represent an important
new tool for modeling brain information processing, using architectures inspired by the
structural and functional graph properties of the brain.
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