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Objective: The objective of this meta- analysis is 
to explore the presently available, empirical findings on 
transfer of training from virtual (VR), augmented (AR), 
and mixed reality (MR) and determine whether such ex-
tended reality (XR)- based training is as effective as tradi-
tional training methods.

Background: MR, VR, and AR have already been used 
as training tools in a variety of domains. However, the ques-
tion of whether or not these manipulations are effective 
for training has not been quantitatively and conclusively an-
swered. Evidence shows that, while extended realities can 
often be time- saving and cost- saving training mechanisms, 
their efficacy as training tools has been debated.

Method: The current body of literature was exam-
ined and all qualifying articles pertaining to transfer of 
training from MR, VR, and AR were included in the meta- 
analysis. Effect sizes were calculated to determine the 
effects that XR- based factors, trainee- based factors, and 
task- based factors had on performance measures after 
XR- based training.

Results: Results showed that training in XR does not 
express a different outcome than training in a nonsimulat-
ed, control environment. It is equally effective at enhanc-
ing performance.

Conclusion: Across numerous studies in multiple 
fields, extended realities are as effective of a training mech-
anism as the commonly accepted methods. The value of 
XR then lies in providing training in circumstances, which 
exclude traditional methods, such as situations when dan-
ger or cost may make traditional training impossible.

Keywords: virtual environments, transfer of training, 
immersive environments, meta- analysis

THE PROMISE OF AUGMENTED 
REALITY, VIRTUAL REALITY, AND MIXED 

REALITY FOR TRAINING

Training is required in order for humans 
to develop necessary performance skills (see 
Holding, 1989). Learning protocols can be 
both expensive and time consuming. Thus, any 
advancement in technology or methodology 
that might reduce the cost, either in financial or 
in temporal terms, will be of great relevance to 
many individuals, organizations, and industries. 
For this reason, simulation- based training has 
shown promise and is gaining acceptance as a 
means to increase training efficiency (Hancock, 
2009). Although simulation- based training can 
be delivered via portable tablets or conven-
tional flat panel displays, we are witnessing an 
increasing use of augmented reality (AR) and 
virtual reality (VR) displays, and new mixed 
reality (MR) displays, which include both AR 
and VR. VR technology generally uses a head-
set, blocking out visual stimulus from the real 
world. AR allows users to see the real world, 
but overlays virtual elements. MR combines the 
two, including aspects of both the real and vir-
tual world. Other definitions of the technology 
employed in those categories, as well as sources, 
are listed in Appendix A. Extended reality (XR) 
is the umbrella term that refers to these three 
different types of simulations. These technolo-
gies promise to reduce some of the costs asso-
ciated with expensive training, especially where 
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spatial information is important, such as in the 
field of aviation (Salas et al., 1998). XR training 
can also eliminate some of the risks inherent to 
high- level training by placing individuals in a 
simulation rather than a real- world dangerous 
situation.

Training in XR promises to have benefits 
beyond simply supplementing traditional train-
ing protocols. Whether it is a time- saving, cost- 
saving measure or not, the benefits that exist 
may still outweigh potential drawbacks. Even 
low- fidelity VR contains aspects of the physical 
world that cannot be replicated in the traditional 
classroom settings (Kozak et al., 1993). One 
can argue that a simulated battlefield has more 
in common with a real battlefield than does a 
classroom. 

The potential also exists that XR might be 
used to help people prepare for situations that 
do not yet exist, or are not yet safe for humans, 
and thus cannot be adequately prepared for in 
situ, for example, prospective missions to Mars 
(Hancock, 2017). XR allows for training in 
locations and for events where there are no safe 
and realistic parallels. Additionally, such sim-
ulations can be rapidly and efficiently updated 
as new information becomes available, unlike 
other full- fidelity built environments, which are 
much less malleable. 

However, training in XR does not solve all of 
the problems that plague current training meth-
ods. While simulation may be the solution to 
some issues, it comes with its own set of caveats 
and concerns that have to be balanced against 
those of more traditional methods. One such 
caveat is the rate of technological innovation, 
which far exceeds the speed of designing, 
implementing, and testing a training regimen 
(Hancock & Hoffman, 2015). Therefore, by the 
time a simulator’s efficacy as a training tool is 
fully tested, it is already out of date. The vari-
ability between the technology in use makes it 
difficult (if not impossible) to empirically repli-
cate an earlier investigation of XR- based train-
ing effectiveness.

In light of these concerns and the numerous 
benefits of XR- based training, it is important to 
assess the applicability of the training (in XR) 
to execution of the task (in the real world). The 
principle of “encoding specificity” indicates 

that when the learning environment is suffi-
ciently different from the environment in which 
learning is subsequently measured, performance 
tends to suffer (Tulving & Thomson, 1973). This 
principle was further explored experimentally 
by Godden and Baddeley (1975), in which they 
found that scuba divers who memorized lists 
of words on dry land recalled those lists bet-
ter above, rather than below, the surface of the 
ocean. This calls into question whether learning 
can fully transfer from practice to performance 
when the performance occurs in a different 
environment from training, such as is the case 
when XR is used. In the Godden and Baddeley 
(1975) example, what if rather than memorizing 
words, an individual was learning how to safely 
operate an underwater air tank? In such a sit-
uation, training on land for subsequent perfor-
mance underwater could prove disastrous if the 
training did not transfer effectively. This same 
concern can be potentially extended to train-
ing in XR. The situations in which simulation- 
based training has the most benefit (i.e., risky, 
expensive, and/or unsafe conditions) also have 
the highest cost of failure when training proves 
inadequate.

Outcomes of Extended Reality and 
Simulation-Based Training

Simulation- based training has already proven 
advantageous for the military. It has been shown 
that pilots who first trained in simulators required 
less in- flight training time before reaching an 
acceptable level of competence (Rantanen & 
Talleur, 2005). Simulators, as surrogates for 
many of the expensive and limited resources or 
dangerous situations encountered by the military, 
free up equipment (such as runways) that might 
be unavailable due to other operational demands 
and allow the training of dangerous operations 
(such as flight and air traffic control) in a safe 
manner. Additionally, training in simulation 
environments offers the possibility of immedi-
ate feedback (Haque & Srinivasan, 2006). Such 
immediacy promotes faster and more accurate 
training by letting the learner self- correct mis-
takes before the result of the error is propagated.

Training in XR appears to hold similar prom-
ise as a solution for many of the problems that 
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currently make traditional training difficult and 
ineffective. Of course, the question of whether 
or not XR is a suitable medium for training is 
the subject of some debate. Applicability of XR 
as a training platform lacks some of the haptic 
feedback that the real world offers. Additionally, 
the variability in visual quality of different XR 
products, lag and tracking problems, and the 
potential for simulator sickness are all sources 
of limitation that may diminish training effi-
cacy. To that end, the success of XR- based 
training must be evaluated empirically across 
differing applied fields. To accomplish this is 
not a straightforward task. Learner capacities 
vary, and inherent individual differences have 
been shown to affect the transfer of training, 
whether from real or simulated sources (Blume 
et al., 2010). Additionally, the modes of deliv-
ery of virtual training vary in fidelity and qual-
ity. Both of these factors have significant effects 
on later performance measures.

The Transfer Effectiveness Ratio
One of the most beneficial aspects of XR 

assessment is that transfer of training from sim-
ulation to the target environment can be directly 
measured. The transfer effectiveness ratio (TER) 
determines the value of time spent training in a 
simulator by calculating the efficacy of the (vir-
tual) training session (and see Roscoe, 1971). 
The equation is as follows:

 TER = Yc − Yx
Y × 100  

where Yc indicates the amount of time or num-
ber of trials it takes to train an individual on a 
specific task, and Yx indicates the time it takes to 
train someone who has already trained on a sim-
ulator, to complete that same task to the same 
level of competence. Thus, a TER value of 0.5 
indicates that training on a simulator can reduce 
the in- person training time by one- half. Using 
this formula, it is possible to specify numeri-
cally the time saved by training using simula-
tion in general or a particular XR technology. 
However, not all training success factors can be 
measured in terms of time saved. Further, not all 
domains have the resources or ability to exper-
iment in order to specify the efficacy of each 
particular set of simulation content and delivery 

mechanism that might be considered. How, 
then, can the efficacy of simulator- based (and 
specifically XR- based) training be explored? 
To answer this question we conducted a meta- 
analysis of the current empirical literature on 
the topic.

The Present Meta-Analysis
VR has previously been examined in meta- 

analysis. However, XR is, in general, so broad 
a topic, and training so important an area, that 
not all aspects of training in XR have been 
addressed in research, and let alone in meta- 
analysis. One previous meta- analysis exam-
ined only the efficacy of surgical simulators 
(see Haque & Srinivasan, 2006), a vital but 
small area. Fletcher et al. (2017) examined a 
broader scope, analyzing the effectiveness of 
VR in training. However, their selection criteria 
were less stringent than for the meta- analysis 
we employ. Fletcher’s analysis allowed arti-
cles where psychological flow and enjoyment 
during virtual training represented an outcome 
variable; additionally, articles were included in 
their assessment where performance was mea-
sured during the time in the virtual environment 
or with the help of virtual aids. In the present 
meta- analysis we employed stringent selection 
criteria in order to fill an important need for a 
tightly controlled, methodologically sound, and 
comprehensive meta- analysis. We only included 
articles if performance measurement took place 
after virtual training, but entirely in the non-
virtual world, to demonstrate training transfer. 
Our focus is narrower, but no less important; 
we look to determine the direct effect that train-
ing using XR has on real- world performance. 
These findings will serve to inform the design 
and application of training regimens using XR.

METHOD
Searching the Literature

A literature search was conducted in order 
to identify all published, peer- reviewed articles 
on the topic of training transfer from XR- based 
training. Search terms consisted of a primary 
phrase describing forms of XR, combined 
with a secondary group of phrases pertaining 
to training. All possible combinations of the 

c
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search terms were used, and the terms are listed 
in Table 1.

The 15 search strings were each entered into a 
series of search engines (ProQuest, EbscoHost, 
and Google Scholar). All results were briefly 
examined to determine whether they met inclu-
sion criteria. The search took place in February 
2019 and included all articles published prior 
to that time. Additionally, prominent schol-
ars in the area of XR were contacted and 
asked whether they had any relevant research 
approaching fruition, which might fit the crite-
ria. Identified relevant articles (n = 130) were 
then examined more closely and rejected (n = 
105) or included (n = 24) in the meta- analysis. 
One article was identified that was published 
after the initial search and was included in the 
analysis (Whitmer et al., 2019). This process is 
illustrated in Figure 1.

Inclusion Criteria
Articles met inclusion criteria if at least one 

of the reported outcome variables measured 
performance that took place after training in 
XR. Articles were also required to be published 
in a peer- reviewed journal, the proceedings of 
a conference, part of a dissertation or thesis, or 
a peer- reviewed technical report. Articles were 
not included if the population was under 18, 
such as elementary school- age students. Articles 
were also rejected for inclusion if the reported 
statistics did not provide sufficient information 
so as to determine an effect size. Suitable sta-
tistics in this analysis were r, d, F, t, or means 
and standard deviations. Finally, it was required 
that all articles involved training in MR, AR, or 
VR. Articles were not included if the outcome 

variable measured something other than perfor-
mance after training, such as level of enjoyment 
or engagement. Additionally, the performance 
being measured had to take place in the real 
world. Experimental results were rejected if the 
outcome variable was performance with the aid 
of XR or performance in a simulation. Articles 
were required to include original empirical 
data. If a dissertation included a sample, and 
that same data were then later used in a referred 
publication or conference proceedings paper, 
the sample was only included once in the final 
analysis. Determination of inclusion and subse-
quent coding of the statistical data in the articles 
were completed by two individuals.

If a study examined the appropriate variables 
but did not include sufficient statistical infor-
mation to determine an effect size, the authors 
were contacted directly and asked to supply 
such information. If the authors did not respond 
with or could not supply the needed statistics, 
the article was not included. While there were a 
variety of different forms of XR used for train-
ing, all fell into one of the aforementioned three 
categories (AR, VR, or MR).

Variables
The outcome variable, in all included studies, 

was some dimension of performance taken after 
training in XR had occurred. Predictor variables 
fell into three general categories related to (a) 
the simulation, such as immersiveness, (b) the 
trainee, such as age, or (c) the task, such as task 
difficulty.

Immersiveness. Of the XR- related variables, 
one often- explored concept involved compari-
sons across differing virtual environments. For 
example, VR using a headset was considered 
more virtually immersive than desktop VR or 
AR. Each of these differing levels of immersion 
may have been compared to an entirely nonsim-
ulated control condition (e.g., real- world train-
ing) or to a less immersive training tool, such as 
an interactive video or a simple instruction man-
ual. Here, we call this variable “immersiveness,” 
and use the word to refer to any comparison 
between environments where one is more virtu-
ally immersive than the other. Despite the  

TABLE 1: Tabulation and Combination of Search 
Terms

Primary Term Secondary Term

Virtual reality Training

VR Learning

Augmented reality Encoding specificity

Mixed reality  

Simulation  
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differences in level of immersiveness of the 
training environment, all studies included in 
this analysis measured final performance in the 
real world.

VR vs. control. A subset of the studies where 
immersiveness was a factor compared training 
in a fully immersive VR setting to training in a 
nonvirtually  immersive control. Such studies 
were included both in the overall effect size 
analysis of immersiveness and in their own spe-
cific subanalysis.

Pre/post training. The variable “pre/post” 
includes any comparison between an individual 
or a group’s performance before XR- based 
training intervention, with performance after 
that same intervention. This variable examines 
the post- training improvement (or lack thereof). 
Regardless of whether or not performance 
improvement was the hypothesis of the original 
article, if performance was measured and suffi-
cient statistical information was supplied, then 
the prescore was compared to the post- training 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) flow diagram 
(Moher et al., 2009).
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score only for groups where the training was 
virtual.

Task Type
The data were examined to determine the 

direct effect on performance of each variable 
described above. The data were also examined 
with task type as a moderator. The three types of 
task categories were as follows.

Cognitive tasks. Cognitive tasks included sit-
uations in which participants learned informa-
tion that later had to be either remembered 
directly, such as in a test of recall, or utilized in 
a subsequent applied setting.

Physical tasks. Physical tasks involved some 
sort of bodily training, such as balance or aero-
bic activities. The predominance here was on 
psychomotor skill assimilation.

Mixed tasks. Some tasks included combina-
tions of both physical and cognitive require-
ments, such as a maintenance task that required 
participants to use learned physical skills while 
simultaneously recalling applicable procedural 
information (see Marras & Hancock, 2014).

Included Articles
Twenty- five articles met the above- stated 

criteria and so were included in the analysis. 
Twenty- three articles examined the XR- related 
factor of immersiveness. The majority of these 
included at least one pairwise comparison 
between a VR training condition and a con-
trol setting (k = 21). A number also examined 
AR compared to a control setting (k = 5). One 
examined training results after training in VR as 
compared to AR (k = 1), and two studies looked 
at different levels of AR (k = 2).

Twelve studies were included in the pre/
post comparison, one of which focused on 
AR and the rest on VR. Only one article that 
met our inclusion criteria examined predictor 
variables other than XR (Bier et al., 2018). 
This work included the effects of both age 
and task difficulty on performance after train-
ing in VR.

Data Analytic Strategy

Many of these articles examined both VR and 
AR and most reported more than one pairwise 
relationship between variables of interest. Thus, 
multiple effect sizes were taken from each. 
Some articles were included in the number of 
studies (k) for multiple predictor variables if 
that article reported enough data to determine 
an effect size of two different variables (e.g., if 
a study reported enough statistical information 
to calculate an effect size for both immersive-
ness and task difficulty, then the two separate 
effect sizes were calculated). For variables 
where k = 1, only one article reported results 
in a method suitable for inclusion in the meta- 
analysis. The calculated Cohen’s d is provided 
here, but, as data only come from one source, 
any confidence intervals surrounding d would 
not be meaningful and thus were not included. 
Such information is included to illustrate what 
is covered by the current research. Individual 
effect sizes are listed in Appendix B.

A total of 176 effect sizes were included, 
which were each converted to Cohen’s d and 
weighted, based on the number of participants 
included. Effects between similar pairs within 
the same study were combined. Therefore, even 
if any one particular study had several effect 
sizes measuring the same variable, results were 
aggregated in order that each study only had 
one overall effect size for each specific pre-
dictor. If an article had two separate studies, 
using two different samples, then two effect 
sizes were calculated. This was done so that the 
results from one sample would not dispropor-
tionately influence the outcome and to maintain 
independence.

Although all dependent variables repre-
sented a performance outcome, the scales used 
to measure performance varied widely. In addi-
tion, the concept of “performance” itself varied 
between articles. Therefore, it was not possible 
to compare directly between studies. As a result 
we used a random- effects model when calculat-
ing the meta- analytic results. For each study a 
weighted value d was determined as the effect 
of the predictor variable on performance, in that 
particular study. These weighted effect sizes 
were then used to determine the overall effect 
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size and the associated 95% confidence inter-
vals. SPSS was used to compute the effect sizes.

The effect sizes determined from this analy-
sis were not intended to determine whether XR 
training was effective. Rather, results addressed 
the question of whether it was different from the 
other methods of training to which it was being 
compared. If the effect size of immersiveness 
is both significant and positive, it represents 
improvement on traditional training. If the 
effect is both significant and negative, then the 
opposite is true. If a zero effect size falls within 
the 95% confidence interval, it would indicate 
here that all levels of immersiveness exert an 
equivalent (or similar) effect on performance 
outcome.

RESULTS
The effect sizes are reported in Table 2. The 

table also indicates the number of separate 
studies investigating each respective predic-
tor (k). Some articles included more than one 
study. Weighted overall levels of d are included, 
as are 95% confidence intervals for each rela-
tionship. Analysis of the associated variable of 

immersiveness, as well as the subset analysis 
of VR compared to control, showed no signif-
icant difference between levels of performance 
post training, regardless of the virtual immer-
siveness. While the negative effect sizes (d = 
−.07 and d = −.13, respectively) indicate a slight 
decrement in training effectiveness when a vir-
tual environment was used, the fact that the 
confidence interval included zero indicates that 
whether one trains in a virtual or a real setting, 
the results are essentially equivalent. In essence, 
these findings indicate that XR experiences are 
as effective as traditional training approaches.

Table 3 shows the effect size based on task 
type. Results show that XR is a more suitable 
medium for training on physical tasks (d = .36), 
but otherwise the type of task learned in simula-
tion does not have an effect on the performance 
outcome.

The overall pattern of effect sizes is com-
pared in Figure 2. Additionally, in Figure 2, 
potentially moderating influencers are divided 
by task type. While these “interaction” effects 
are interesting, we have to caution against 
relying excessively on these results at present. 

TABLE 2: Overall Effect Sizes of the Associated Variables

Predictor
Number of Studies 

(K) Cohen’s d
95% Confidence Interval
Lower Limit Upper Limit

Immersiveness 23 −.07 −0.22 +0.07

VR compared to control 21 −.13 −0.27 +0.02

Pre/post training 12    .09 −1.05 +1.23

Age 1 −.08   

Task difficulty 1 −.15   

VR, virtual reality.

TABLE 3: Effect Sizes by Task Type

Task Type Number of Studies (K) Cohen’s d
95% Confidence Interval
Lower Limit Upper Limit

Cognitive tasks 9    .01 −0.24 +0.27

Mixed tasks 12 −.07 −0.31 +0.17

Physical tasks 8     .36* +0.01 +0.70

* indicates significant effect beyond p < .05 level.
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This is because, with the addition of each mod-
erating factor, the number of applicable studies 
is smaller. Thus, there is less between- study 
variation in the calculations for the smaller 
number of studies. For forest plots showing 
the effects of individual studies by task type/
predictor clusters, see Figures 4 through 6 in 
Appendix C.

Additional Analysis and Overlap Between 
Conditions

Within each study, performance tended to 
be quite similar between immersiveness con-
ditions. To that end, it was important to deter-
mine the similarity between the conditions 
beyond simply noting that for immersiveness 
variables confidence intervals included zero. 
For this reason, scores were compared in order 
to determine overlap. The data could not be 
compared directly, as each study used differ-
ent scales to measure performance. So, the 
mean performance of each training condition 
within a study was converted to a z- score. The 
average z- score for each condition, as well as 
a 95% confidence interval, is shown below 
in Figure 3. As these z- scores came from the 

two conditions present in each evaluation, 
they are mirror images of each other. Only 
their size and magnitude are meaningful; the 
value of the average z itself has no real- world 
meaning except in indicating the difference 
between scores of participants in each condi-
tion. The fact that average z- scores were so 
small in value serves to highlight the similar-
ity between conditions. The mean z- score for 
the more immersive condition was lower than 
the less immersive and control conditions, yet 
the overlap between confidence intervals was 
large. These findings indicate that, though a 
more virtually immersive training condition 
results in slightly worse performance than a 
real training setting, the majority of individuals 
will show similar results after training, regard-
less of the level of virtual immersiveness.

DISCUSSION
The fact that the zero could not be excluded 

from the confidence intervals relating to any 
of the present overall predictors indicates an 
apparent equivalency between XR training and 
traditional instructional techniques employed 
in situations such as a classroom. If we take 

Figure 2. Forest plot of effect sizes by associated variable; 95% confidence intervals shown.
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an optimistic perspective, these results con-
firm that the use of VR, MR, and AR train-
ing procedures provides at least an equivalent 
performance result to that which is normally 
experienced in traditional instruction methods. 
If this is the case, and performance outcomes 
after XR training are not significantly different 
than outcomes after traditional training, then the 
previously enumerated benefits of XR training 
(such as safety, cost, and ease of implementing 
changes) make it, on the whole, a more valu-
able investment of time than traditional training 
methods. After all, if the performance outcome 
is essentially the same, the other benefits of XR 
training make it a superior option.

However, it must be acknowledged that XR 
has often been held out to offer superior train-
ing capacities (especially in popular press and 
by various vendors). The results of the present 
meta- analysis indicate that the case for this 
proposition is at best “not proven.” Though 
one study did find that training in VR improved 
speed of a maintenance task, compared to a no- 
training control group (Ganier et al., 2014), the 
comparison of interest is not between XR and 
no training, but XR and traditional training. 
Overall performance following XR- based train-
ing is neither better nor worse than performance 
following traditional training.

Of course, the benefit of training can be 
measured in more than just performance 

after- the- fact. Though it is beyond the quantita-
tive scope of this meta- analysis, the use of VR 
in training has been shown to affect presence 
and immersion, as well as the psychological 
dimension of flow (see Lackey et al., 2016). 
All of these are important factors to consider 
in training beyond evaluating performance out-
come alone.

In addition to the mean level of the effect 
sizes noted in Figure 2, there proved to be 
unusually large confidence intervals, particu-
larly concerning the pre/post variable. These 
ranges of variability mean that there were an 
approximately equal number of effects report-
ing strong transfer, as there were effects indicat-
ing negative transfer. This range may be viewed 
as disturbing. On the principle of “do no harm,” 
it is important to know that an imposed train-
ing regimen will not actually cause the trained 
individual to be less proficient than they would 
have been with a traditional training approach. 
At present, because of the associated degree of 
variability we cannot ensure that this is always 
so. It may be that XR provides significant per-
formance benefits but equally we cannot rule out 
that such a manipulation may inhibit learning in 
some cases. Some studies found large positive 
effects of XR training, but a few did find nega-
tive effects (see Appendix C). The sources were 
varied enough that it was not immediately clear 
whether there were any commonalities between 

Figure 3. Immersiveness variables and confidence intervals by condition.
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those finding negative effects. To investigate 
further would require a larger body of research 
from which to draw conclusions. The fact that 
XR- based training had the same level of success 
as traditional training indicates that “encoding 
specificity” (see Godden & Baddeley, 1975) 
does not pose a problem for XR training. That 
is, the virtual environments employed in XR 
are clearly similar enough to the real environ-
ment that transfer can occur effectively. It can 
therefore be accepted that any negative transfer 
or otherwise poor performance after XR- based 
training is not a result of XR itself being an 
unsuitable medium, but a result of some other 
factors such as fidelity or individual differences.

There are several possibilities as to why 
this high degree of variability occurs. First, the 
actual training tasks represented in the summa-
tion here were highly heterogeneous. While each 
study examined a separate form of task, the two 
main categories of tasks were physical (where 
participants were required to practice or learn 
some spatial, procedural task) and cognitive 
(where participants acquired new information, 
but did not need to use it in a physical sense). 
Yet, even within these categories, there proved 
to be large variations. For example, cognitive 
tasks ranged from rote memorization of facts 
about planets to conducting simulated medical 
dissections. Physical tasks involved balancing 
skills, as well as performing a maintenance task 
similar to that which a factory worker might do 
on the job.

While overall XR training was more suc-
cessful on physical tasks than cognitive tasks, 
this finding was not consistent. One study 
included in the analysis of the physical tasks 
used XR in order to teach the recovery of 
balance to stroke patients (Lee et al., 2015). 
Results of this particular study found that a 
large number of participants performed worse 
in the follow- up assessment. Of course it is 
possible that the stroke patients were deterio-
rating in capacity over time, that is, a declining 
baseline. On the other hand, a cognitive task 
study where participants learned mathematics 
showed that scores were consistently higher 
after the VR training intervention (Bier et al., 
2018). However, due to the variability in the 
literature, this question needs further study.

Many studies examining physical tasks did 
show actual performance improvement after 
XR training. Several of these studies included 
in the analysis involved special populations 
such as stroke victims, with the virtual train-
ing a method to improve their physical abili-
ties and retrain them in lost skills. Studies on 
healthy populations have occasionally shown 
that even procedural tasks such as way- finding 
can benefit more from virtual training than 
from standard training (Goldiez et al., 2007). 
Such findings may have been washed out by 
the variability of the populations examined 
in the included studies. The literature does 
not yet support a more thorough examination 
of task or population differential as a subpre-
dictor. However, these shortfalls can be recti-
fied with future research. Table 4 shows each 
study by task type and population examined. 
Here, a typical population refers to any popu-
lation where participants were not selected for 
any specific expertise or illness, but in nearly 
every case was an undergraduate or university 
sample.

In the analysis of cognitive tasks, one study 
involved adults with autism, and six involved 
samples from the general population (one of 
which having age restrictions; Bier et al., 2018). 
The mixed tasks involved four populations from 
medical school, two groups of experienced 
technicians, and five typical populations. In 
the examination of physical tasks, three studies 
involved typical populations, although one had 
an age restriction (Prasertsakul et al., 2018), and 
four medical samples with specific ailments. 
The disparity in populations examined in each 
task type is thus fairly clear.

One other caveat with respect to the find-
ings of the present meta- analysis is the tech-
nology used in each study. While some of the 
identified studies included information about 
the specific model of VR or AR technology 
used, not all did. Of the studies that did provide 
information, many utilized different levels of 
the XR platform (e.g., interactive video games, 
full- motion simulators). This differentiation 
might help explain some of the performance 
differences. While the examined variable of 
immersiveness addressed some of the differ-
ences between the degrees of virtuality, no 
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such distinctions can be made in the case of 
difference in quality. Not all XR technologies 
are created equal, and to compare two stud-
ies using different XR systems may even be 
inappropriate to some degree. Disparate tech-
nology makes it difficult to determine direct 
effects of each training intervention with so 
few studies being suitable for analysis (see 
Hancock & Hoffman, 2015).

Finally, it is important to reiterate that results 
of the present meta- analysis, as are results 
from all such analyses, are constrained by the 
limits and extent of the existing body of litera-
ture. There were insufficient studies to examine 
many of the factors related to either the task or 

the learner. Nor was there enough information 
to fully examine the subject of training trans-
fer from XR, in sufficient depth so that reliable 
conclusions can be reached. Further, there were 
insufficient numbers of studies on AR to ana-
lyze its affects as distinct from those of VR. The 
“count of studies” columns in Tables 2 and 3 
reveal the surprising paucity of research in this 
vital area. This then is not simply a case of “more 
research is needed,” but a case in which more 
diverse research is needed. This may well be an 
issue involved with the impetus and constituen-
cies to fund such research. Many organizations 
“sell” training but frequently do not provide 
robust quantitative evidence of the value of that 

TABLE 4: Task Types and Populations

Citation Task Type Population

Andersen et al. (2016) Mixed Otorhinolaryngology residents

Andersen et al. (2018) Mixed Otorhinolaryngology residents

Bailey et al. (2017) Mixed Normal

Bier et al. (2018) Cognitive 27 older and 30 younger adults

Buttussi and Chittaro (2018) Cognitive Normal

Chan et al. (2011) Physical Normal; dancers

Ganier et al. (2014) Mixed Normal

Gavish et al. (2015) Mixed Experienced technicians

Gerson and Van Dam (2003) Mixed Medical residents

Gonzalez- Franco et al. (2016) Mixed Normal

Hamblin (2005) Mixed Normal

Kober et al. (2013) Physical Population: spatial disorientation

Lee et al. (2015) Physical Stroke population

Ma et al. (2011) Physical Parkinson’s population

Macchiarella (2004) Cognitive Normal

Madden et al. (2018) Cognitive Normal

Martín- Gutiérrez et al. (2010) Mixed Normal

Prasertsakul et al. (2018) Physical Adults age 40–60

Rose et al. (2000) Physical Normal

Smith et al. (2014) Cognitive Autistic adults

Valimont et al. (2007) Cognitive Normal

Wang et al. (2014) Mixed Medical students

Webel et al. (2013) Mixed Experienced technicians

Whitmer et al. (2019) Cognitive Normal

Yang et al. (2008) Physical Stroke population
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training in their promotional literature. The goal 
here is not to simply point out shortcomings in 
the existing field of research, but to identify 
those points where future research should be 
conducted in order to best examine quantifiable 
antecedents of training efficacy in XR.

LIMITATIONS AND CONCLUSIONS

Although the current literature is surpris-
ingly sparse, posing some limitations for the 
present meta- analysis, our present results are 
not inconclusive. However, due to this pres-
ent paucity, certain analyses cannot be effec-
tively performed. For example, it might be 
useful and insightful to consider the ways in 
which the variables associated specifically 
with training per se are nested within those 
particularly focused upon the state of the 
technology in each of AR, VR, and XR. To 
date, insufficient information has been col-
lected upon these combinations such that we 
may be confident of the outcome. As with this 
and other current shortfalls, we have high-
lighted important gaps in the literature that 
need to be addressed if this important field is 
to move forward. For any meaningful effects 
to be determined from future comprehensive 
studies (meta or otherwise), the questions 
raised in our present work must be addressed. 
One of the most pressing areas needing more 
research is individual differences; soldiers 
are a very different population from elderly 
stroke victims. Studies are needed that enable 
performance comparisons between popula-
tions by holding variables such as simulation 
platform, task, and performance measures 
constant and studying performance by differ-
ent population groups. This is essential for 
understanding which differences in results 
can be attributed directly to the effect of 

population factors such as experience or com-
fort with XR technology.

The second critical, but varying influence 
is the technology in use. At present there is a 
wide range of VR headsets and simulated envi-
ronments used in studies. These are potentially 
of very different quality, although quality was 
rarely reported in the methods of each study. 
“Fidelity” is a word which was used with some 
regularity, but in the absence of consideration 
of how the affordances of a virtual environment 
or of a simulation used met the needs of those 
being trained. In this endeavor, a useful set of 
dimensions have already been defined in Extent 
of World Knowledge, Reproduction Fidelity, and 
Extent of Presence Metaphor (see Milgram et al., 
1995). Researchers would do well to complete 
any simulation studies multiple times with differ-
ent display technologies, especially when the dif-
ference in quality is already quantified (Hancock 
et al., 2015).

The third area which requires more speci-
fication is the task designation. It may be that 
training sessions were entirely different as 
they were meant to train unique tasks. Indeed, 
the present body of evidence suggests that not 
all task types benefit equally and the physical/
cognitive division may not be the most criti-
cal one. What makes tasks amenable to con-
sistently efficacious XR training is presently 
not well understood. Indeed, all three of these 
factors, and any interactions between them, 
make it difficult to determine the effect of vir-
tual training on later performance. What the 
literature does support, currently, is the fact 
that XR training has similar performance out-
comes to traditional training. In the absence 
of any significant differences between XR and 
traditional training, there is a bright future in 
considering the many benefits that XR training 
promises.
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APPENDIX A: Definitions of AR, VR, and MR

Type of 
Simulated 
Reality Definition Source

Augmented 
reality

Any system that has the following three characteristics:
1. Combines real and virtual
2. Is interactive in real time
3. Is registered in three dimensions

Azuma (1997)

All cases in which the display of an otherwise real environment is  
augmented by means of virtual (computer graphic) objects

Milgram and 
Kishino (1994)

Augmenting natural feedback to the operator with simulated cues Milgram et al. 
(1995)

The enhancement of the real world by a virtual world, which subsequently 
provides additional information

Feiner et al. 
(1993)

AR displays are those in which the image is of a primarily real environment, 
which is enhanced, or augmented, with computer- generated imagery

Drascic and 
Milgram 
(1996)

Virtual reality VR can be defined as a three- dimensional computer- generated environment, 
updating in real time, and allowing human interaction through various 
input/output devices

Boud et al. 
(1999)

Strictly the term virtual reality describes something that is “real in effect 
although not in fact” [virtual] and which “can be considered capable of 
being considered fact for some purposes” [reality]. A virtual environment, 
put simply, is an environment other than the one in which the participant is 
actually present; more usefully it is a computer- generated model, where a 
participant can interact intuitively in real time with the environment

Wilson (1997)

A “virtual reality” is defined as a real or simulated environment in which a 
perceiver experiences telepresence

Steuer (1992)

Virtual reality is an alternate world filled with computer- generated images 
that respond to human movements. These simulated environments 
are usually visited with the aid of an expensive data suit which features 
stereophonic video goggles and fiber- optic data gloves

Greenbaum 
(1992)

It is a new emergent mode of reality in its own right, that comes together 
with actual reality to construct an extended world of human experience

Yoh (2001)

Virtual reality is a technology that convinces the participant that he or she 
is actually in another place by substituting the primary sensory input with 
data produced by a computer

Heim (1998)

A computer- generated display that allows or compels the user (or users) to 
have a sense of being present in an environment other than the one they 
are actually in, and to interact with that environment

Schroeder 
(1996)

Mixed reality Mixed reality refers to the class of all displays in which there is some 
combination of a real environment and virtual reality

Drascic and 
Milgram 
(1996)

Mixed reality environment is one in which real- world and virtual world 
objects are presented together within a single display

Milgram et al. 
(1995)
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APPENDIX B: Effect Sizes by Study

Source N Task Type Associated Variable
Effect 

Size

Andersen et al. (2018) 37 Mixed Immersiveness −0.54

Andersen et al. (2018) 37 Mixed Immersiveness −0.55

Andersen et al. (2016) 40 Mixed Immersiveness −1.40

Andersen et al. (2016) 40 Mixed Immersiveness −1.12

Andersen et al. (2016) 40 Mixed Immersiveness −0.92

Andersen et al. (2016) 20 Mixed Pre/post 0.54

Andersen et al. (2016) 20 Mixed Pre/post 0.07

Andersen et al. (2016) 20 Mixed Pre/Ppost 0.47

Bailey et al. (2017) 83 Mixed Immersiveness 0.27

Bailey et al. (2017) 83 Mixed Immersiveness 0.06

Bier et al. (2018) 27 Cognitive Task difficulty −0.92

Bier et al. (2018) 30 Cognitive Task difficulty −1.28

Bier et al. (2018) 27 Cognitive Task difficulty 0.28

Bier et al. (2018) 30 Cognitive Task difficulty 0.19

Bier et al. (2018) 27 Cognitive Task difficulty −0.53

Bier et al. (2018) 30 Cognitive Task difficulty 0.88

Bier et al. (2018) 27 Cognitive Task difficulty −0.05

Bier et al. (2018) 30 Cognitive Task difficulty 0.26

Bier et al. (2018) 57 Cognitive Age 3.83

Bier et al. (2018) 57 Cognitive Age 0.61

Bier et al. (2018) 57 Cognitive Age −0.08

Bier et al. (2018) 57 Cognitive Age −0.23

Bier et al. (2018) 57 Cognitive Age −2.07

Bier et al. (2018) 57 Cognitive Age −0.77

Bier et al. (2018) 57 Cognitive Age −1.10

Bier et al. (2018) 57 Cognitive Age −0.87

Bier et al. (2018) 14 Cognitive Pre/post 0.98

Bier et al. (2018) 13 Cognitive Pre/post 0.06

Bier et al. (2018) 15 Cognitive Pre/post 1.42

Bier et al. (2018) 15 Cognitive Pre/post 0.85

Bier et al. (2018) 14 Cognitive Pre/post 0.58

Bier et al. (2018) 13 Cognitive Pre/post 0.19

Bier et al. (2018) 15 Cognitive Pre/Post −0.51

Bier et al. (2018) 15 Cognitive Pre/post −0.54

Bier et al. (2018) 14 Cognitive Pre/post −1.18

Bier et al. (2018) 13 Cognitive Pre/post −1.69

Bier et al. (2018) 15 Cognitive Pre/Post −1.77

Bier et al. (2018) 15 Cognitive Pre/Post −1.31

Bier et al. (2018) 14 Cognitive Pre/post −0.55

(continued)
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Source N Task Type Associated Variable
Effect 

Size

Bier et al. (2018) 13 Cognitive Pre/Post −0.18

Bier et al. (2018) 15 Cognitive Pre/post −0.39

Bier et al. (2018) 15 Cognitive Pre/post −0.08

Buttussi and Chittaro (2018) 96 Cognitive Immersiveness 0.12

Buttussi and Chittaro (2018) 96 Cognitive Immersiveness 1.00

Buttussi and Chittaro (2018) 96 Cognitive Immersiveness −0.88

Buttussi and Chittaro (2018) 96 Cognitive Pre/post 6.26

Buttussi and Chittaro (2018) 96 Cognitive Pre/post 5.62

Buttussi and Chittaro (2018) 96 Cognitive Pre/Post 6.50

Chan et al. (2011) 8 Physical Immersiveness 1.65

Chan et al. (2011) 4 Physical Pre/post −2.07

Ganier et al. (2014) 42 Mixed Immersiveness 1.17

Ganier et al. (2014) 42 Mixed Immersiveness −1.14

Gavish et al. (2015) 20 Mixed Immersiveness 0.28

Gavish et al. (2015) 20 Mixed Immersiveness 0.28

Gavish et al. (2015) 20 Mixed Immersiveness −0.21

Gavish et al. (2015) 20 Mixed Immersiveness 0.00

Gerson and Van Dam (2003) 16 Mixed Immersiveness −1.12

Gonzalez- Franco et al. (2016) 24 Mixed Immersiveness −0.12

Gonzalez- Franco et al. (2016) 24 Mixed Immersiveness −0.58

Hamblin (2005) 18 Mixed Immersiveness 0.06

Hamblin (2005) 18 Mixed Immersiveness −1.67

Hamblin (2005) 18 Mixed Immersiveness −2.30

Hamblin (2005) 18 Mixed Immersiveness −0.34

Hamblin (2005) 18 Mixed Immersiveness −3.70

Hamblin (2005) 18 Mixed Immersiveness −2.13

Martín- Gutiérrez et al. (2010) 49 Mixed Immersiveness 0.63

Martín- Gutiérrez et al. (2010) 49 Mixed Immersiveness 0.51

Martín- Gutiérrez et al. (2010) 25 Mixed Pre/post 1.02

Martín- Gutiérrez et al. (2010) 25 Mixed Pre/post 1.27

Kober et al. (2013) 11 Physical Pre/post 0.21

Kober et al. (2013) 11 Physical Pre/post 2.92

Lee et al. (2015) 24 Physical Immersiveness 0.07

Lee et al. (2015) 24 Physical Immersiveness 0.07

Lee et al. (2015) 24 Physical Immersiveness 0.04

Lee et al. (2015) 24 Physical Immersiveness 0.04

Lee et al. (2015) 24 Physical Immersiveness 0.25

Lee et al. (2015) 24 Physical Immersiveness 0.26

Lee et al. (2015) 24 Physical Immersiveness 0.03

Lee et al. (2015) 24 Physical Immersiveness 0.03

(continued)
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Source N Task Type Associated Variable
Effect 

Size

Lee et al. (2015) 24 Physical Immersiveness 0.49

Lee et al. (2015) 12 Physical Pre/post −0.38

Lee et al. (2015) 12 Physical Pre/post −0.38

Lee et al. (2015) 12 Physical Pre/post −0.42

Lee et al. (2015) 12 Physical Pre/post −0.42

Lee et al. (2015) 12 Physical Pre/post −0.49

Lee et al. (2015) 12 Physical Pre/post −0.49

Lee et al. (2015) 12 Physical Pre/post −0.51

Lee et al. (2015) 12 Physical Pre/pst −0.51

Lee et al. (2015) 12 Physical Pre/post 1.41

Ma et al. (2011) 33 Physical Immersiveness −0.73

Ma et al. (2011) 33 Physical Immersiveness 0.45

Ma et al. (2011) 33 Physical Immersiveness −0.24

Ma et al. (2011) 33 Physical Immersiveness 0.00

Ma et al. (2011) 33 Physical Immersiveness −0.28

Ma et al. (2011) 33 Physical Immersiveness −0.53

Ma et al. (2011) 33 Physical Immersiveness −0.4

Ma et al. (2011) 33 Physical Immersiveness 0.46

Ma et al. (2011) 33 Physical Immersiveness 0.10

Ma et al. (2011) 33 Physical Immersiveness −0.76

Ma et al. (2011) 33 Physical Immersiveness −0.16

Ma et al. (2011) 33 Physical Immersiveness −0.16

Ma et al. (2011) 33 Physical Immersiveness −0.02

Ma et al. (2011) 33 Physical Immersiveness 0.26

Ma et al. (2011) 33 Physical Immersiveness −0.10

Ma et al. (2011) 33 Physical Immersiveness −0.08

Ma et al. (2011) 33 Physical Immersiveness −0.24

Ma et al. (2011) 33 Physical Immersiveness −0.73

Ma et al. (2011) 33 Physical Immersiveness −0.42

Ma et al. (2011) 33 Physical Pre/post −0.71

Ma et al. (2011) 33 Physical Pre/post 0.61

Ma et al. (2011) 33 Physical Pre/post −0.3

Ma et al. (2011) 33 Physical Pre/ppost 0.38

Ma et al. (2011) 33 Physical Pre/post 0.10

Ma et al. (2011) 33 Physical Pre/post −0.25

Ma et al. (2011) 33 Physical Pre/post 0.18

Ma et al. (2011) 33 Physical Pre/post −0.10

Ma et al. (2011) 33 Physical Pre/post −0.44

Ma et al. (2011) 33 Physical Pre/post −0.13

Ma et al. (2011) 33 Physical Pre/post −0.33

(continued)
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Source N Task Type Associated Variable
Effect 

Size

Ma et al. (2011) 33 Physical Pre/post 0.12

Ma et al. (2011) 33 Physical Pre/post 0.04

Ma et al. (2011) 33 Physical Pre/post 0.03

Ma et al. (2011) 33 Physical Pre/post 0.03

Ma et al. (2011) 33 Physical Pre/post −0.18

Ma et al. (2011) 33 Physical Pre/post 0.00

Ma et al. (2011) 33 Physical Pre/post −0.45

Ma et al. (2011) 33 Physical Pre/post −0.33

Macchiarella (2004) 96 Cognitive Immersiveness −0.05

Macchiarella (2004) 96 Cognitive Immersiveness −0.44

Macchiarella (2004) 96 Cognitive Immersiveness −0.82

Macchiarella (2004) 96 Cognitive Immersiveness −0.39

Macchiarella (2004) 96 Cognitive Immersiveness −0.76

Madden et al. (2018) 172 Cognitive Immersiveness 0.11

Madden et al. (2018) 172 Cognitive Immersiveness 0.24

Madden et al. (2018) 56 Cognitive Pre/post 1.48

Prasertsakul et al. (2018) 8 Physical Immersiveness 0.61

Prasertsakul et al. (2018) 8 Physical Immersiveness 0.23

Prasertsakul et al. (2018) 8 Physical Immersiveness 0.90

Prasertsakul et al. (2018) 8 Physical Immersiveness 0.23

Prasertsakul et al. (2018) 8 Physical Immersiveness −0.01

Prasertsakul et al. (2018) 8 Physical Immersiveness −0.05

Prasertsakul et al. (2018) 8 Physical Immersiveness 0.07

Prasertsakul et al. (2018) 8 Physical Immersiveness −0.02

Prasertsakul et al. (2018) 8 Physical Immersiveness 0.93

Prasertsakul et al. (2018) 8 Physical Immersiveness 1.37

Prasertsakul et al. (2018) 4 Physical Pre/post 0.11

Prasertsakul et al. (2018) 4 Physical Pre/post 0.42

Prasertsakul et al. (2018) 4 Physical Pre/post −0.57

Prasertsakul et al. (2018) 4 Physical Pre/post −0.32

Prasertsakul et al. (2018) 4 Physical Pre/post −0.26

Prasertsakul et al. (2018) 4 Physical Pre/post 0.11

Prasertsakul et al. (2018) 4 Physical Pre/Post −0.15

Prasertsakul et al. (2018) 4 Physical Pre/post −0.03

Prasertsakul et al. (2018) 4 Physical Pre/post −0.22

Prasertsakul et al. (2018) 4 Physical Pre/post 0.32

Rose et al. (2000) 100 Physical Immersiveness 0.17

Smith et al. (2014) 26 Cognitive Immersiveness 0.72

Smith et al. (2014) 16 Cognitive Pre/post 0.56

Valimont et al. (2007) 32 Cognitive Immersiveness 0.45

(continued)
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Source N Task Type Associated Variable
Effect 

Size

Valimont et al. (2007) 32 Cognitive Immersiveness 0.69

Valimont et al. (2007) 32 Cognitive Immersiveness 1.01

Valimont et al. (2007) 32 Cognitive Immersiveness 0.51

Valimont et al. (2007) 32 Cognitive Immersiveness 0.59

Valimont et al. (2007) 32 Cognitive Immersiveness 0.67

Wang et al. (2014) 16 Mixed Immersiveness 0.35

Wang et al. (2014) 16 Mixed Immersiveness −1.51

Webel et al. (2013) 20 Mixed Immersiveness −1.51

Whitmer et al. (2019) 41 Cognitive Immersiveness −0.89

Yang et al. (2008) 20 Physical Immersiveness 1.08

Yang et al. (2008) 20 Physical Immersiveness 0.67

Yang et al. (2008) 20 Physical Immersiveness −0.99

Yang et al. (2008) 20 Physical Immersiveness −0.89

Yang et al. (2008) 20 Physical Immersiveness 0.61

Yang et al. (2008) 20 Physical Immersiveness 1.00

Yang et al. (2008) 20 Physical Immersiveness 0.47

Yang et al. (2008) 20 Physical Immersiveness 0.13

APPENDIX C: Forest plot of individual studies by task type/predictor clusters

Figure 4. Studies involving cognitive tasks.
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Figure 5. Studies involving mixed tasks.

Figure 6. Studies involving physical tasks.
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KEY POINTS

 ● Performance after training in VR/AR is generally 
comparable to performance after training in a 
traditional setting.

 ● The population being trained, and task being 
trained upon, can affect whether VR/AR is an 
effective medium for training.

 ● The field of research is too disparate to deter-
mine precisely which factors contribute to better 
training transfer from VR/AR.
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