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OVERVIEW

Cyber-defenders face lengthy, repetitive work
assignments with few critical signals and little control
over what transpires. Their task is one of vigilance,

well studied in contexts including air traffic control and
medical monitoring. Cyber-defense display information
density is several orders of magnitude above that seen in the
aforementioned domains, and therefore blindly generalizing
prior research is inadvisable. To understand this unique
domain, we asked participants to perform a simulated cyber-
security task, searching for attack signatures in Internet
traffic information. Consistent with results observed in
“traditional” vigilance paradigms, signal detection declined
significantly over time, it was directly related to signal
probability, and it was inversely related to event rate.
Reported high mental workload accompanied such degraded
performance. These results highlight the necessity for
understanding the physical and cognitive ergonomics
underlying cyber-defense. They also suggest vulnerability
to denial & deception (D&D) tactics which would effectively
hack the human rather than the machine.

INTRODUCTION

In a world of asymmetric conflict in which the dominant
force of arms is owned by one side in the struggle,
inherent conditions force the opposition to adopt new

and innovative strategies and tactics if the warfare is to
persist. Guerrilla tactics have always featured such
necessary innovation, while the dominant entity similarly
employs a variety of innovations to match evolving
circumstances. Our age provides new opportunities;
electronic networks such as the World Wide Web provide
the opportunity to effect action at a distance. In many
contemporary societies, predicated upon the foundation of
safe, secure, and effective networks, disruption and
destruction of hardware- and software-based systems pose
crucial threats. Traditional D&D tactics take on new
destructive and distractive power in a fully human-generated
electronic environment. Unlike traditional conflict, attacks of
this sort require no immediate physical presence of the
attacker, and thus represent an appealing strategy to those
constrained by kinetic force of arms.

In general, today there are cyber-attack forces which
necessarily mandate the need for cyber-defense. As
described by the previous Chief Scientist of the U.S. Air
Force, Dr. Mark Maybury, cyberspace is a domain from and
through which Air Force (AF) operations are performed, and
it is essential for all such operations.1 Of course, cyber-
security extends well beyond military operations, but its
centrality to national defense provides some idea of the
importance of the domain. Given that importance, it is critical
to maintain cyberspace security to prevent intrusion by
foreign state actors, non-state actors (e.g., hackers), or even
inadvertent interference.

The noisy, information-dense, human-conceived
environment of cyber provides an excellent staging ground
from which to practice the ancient art of deception.2 A
variety of strategies exists to deny access to real information
about malicious network actions,3 and although software
initially identifies potential attacks such automation is never
perfect. Thus, candidate attack events and false positives
must be monitored by human observers who render the final
decision. In small institutions, this process may be as simple
as having an individual occasionally check for software
alerts. However, within the present scale of military and
civilian network activity, petabytes of data move between
millions of addresses each day. As such, the human factor in
military cyber-defense is larger by orders of magnitude.
Dedicated teams of cyber-defenders are assigned to monitor
algorithmically identified network traffic to determine if
suspicious patterns warrant further detailed analysis. They
then forward evidence to cyber forensic teams for
subsequent examination.4 5

At present, contemporary cyber-intrusion detection systems
are based solely on computer network analysis.6 Though the
algorithms and analytic techniques used in these systems
vary considerably, most intrusion detection systems (IDS)
identify malicious activity by algorithmically comparing
current network activity to previously encountered or
“known” malicious software signatures. This is also a key
limitation of such systems—even slightly altering the
underlying code of an attack may prevent its detection. To
avoid this, IDS detection algorithms are purposely liberal,
broadly flagging any activity that resembles a known
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signature. Further complicating these issues are attacker
attempts to disguise malicious code by creating deliberate
similarities between attacks and “normal” traffic, which
may greatly increase false positive rates. To supplement
and improve IDS, cyber-defenders use a variety of tools,
including hand-sorting, to discriminate attacks from false
positives. This effort involves searching for specific
patterns in information including key words and Internet
protocol (IP) addresses, although the exact natures of the
targets are changeable and unknown. Base rate of
success is also unknown; while (in conventional warfare)
casualties might be counted, a well-executed and
successful cyber-attack may leave no trace.

In pursuing their mission, cyber-defenders face highly
repetitive work assignments featuring large quantities of
data (most of which are ultimately false positives) that
must be processed. Embedded in these trains of
information are few critical occurrences. Cyber-defenders
have little control over the rate at which such critical
events appear and, as candidate signals are passed on to
other teams, have little knowledge of their ultimate
resolution. Their task bears the hallmark of what is known
in the ergonomics and human factors community as a
vigilance task, in which operators must focus their
attention and detect infrequently occurring critical signals
over prolonged periods of time.7 8 Understanding of
vigilance tasks and appropriate countermeasures are
crucial in many working environments wherein such semi-
automated systems are featured. Some of these include air
traffic control, cockpit display monitoring, airport
security, industrial process control, long distance driving,
and the monitoring of anaesthesia gauges during surgery,
among many others. Accidents ranging from minor to
major have resulted from vigilance failures by human
observers.9 Consequently, one can posit that cyber-
security operations could take advantage of what is
known about vigilance in order to enhance their mission
success rate. However, this presently appears to be an
unexplored opportunity.

To date, the only study to examine vigilance performance
in cyberspace was carried out by McIntire and her
associates.10 They showed that the vigilance decrement,
the temporal decline in signal detection that typifies
vigilance performance,11 12,  also occurred in a simulated
cyber task, and that the decrement was accompanied by
changes in oculomotor activity, such as blink frequency
and duration, and pupil diameter, which they argued could
be employed to detect when cyber operators are in need
of rest or replacement.

In addition to time on task, vigilance performance is
determined by a number of psycho-physical factors which
confront observers with perceptual challenges.

Knowledge of those challenges could enable designers to
develop cyber displays that can be interrogated more
effectively by observers.13 14 Accordingly, one goal for
our present study was to extend the link between
vigilance and cyber tasks by determining if two of the
most critical psycho-physical factors, signal probability
and event rate, would affect performance on a simulated
cyber task. Signal probability refers to the likelihood that
any stimulus event is a critical signal, while event rate
refers to the number of stimulus events that must be
monitored in order to detect critical signals.

...attacks in the field, especially those of
real consequence, are so diluted in the high
event rate as to qualify as the putative
“black swans.”

Performance efficiency in vigilance tasks varies directly
with the probability of critical signals and inversely with
event rate.15 16 Event rate might defensibly be labelled
“self-paced” in many real-world cyber-defense
environments. However, overall event rate is a function of
the total candidate signals over time, divided of course by
the workforce size available. This is a metric that readily
indexes to the macro view of cyber-defense: rapid growth
in infrastructure coupled with a shortage of information
security professionals. Our current task presented stimuli
at a controlled rate. Given the supposition that actual
events in the field are high and climbing we have chosen
to explore precisely what, in the context of information
processing demands, is a demanding event rate.
Conversely, signal probability in cyber-defense, although
not known, is likely well below the 5% “low” rate of our
present experiment. This probability is a practicality of
experimental design since we must have enough
candidate signals to observe variation between groups. It
is worth noting, however, that attacks in the field,
especially those of real consequence, are so diluted in the
high event rate as to qualify as the putative “black
swans.”17

In addition to confronting observers with perceptual
challenges, vigilance tasks also induce high levels of
perceived mental workload18 as reflected by the NASA-
Task Load Index,19 which is considered to be one of the
most effective measures of perceived mental workload
currently available.20 It provides a measure of overall or
global workload on a 0-100 scale and identifies the relative
contribution of six sources of workload:  Mental Demand,
Physical Demand, Temporal Demand, Performance, Effort,
and Frustration. As summarized by Finomore, Shaw,
Warm, Matthews, and Boles,21 Warm et al.,22 and Wickens
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et al.,23 a number of studies have shown that the global
workload scores on vigilance tasks fall at the upper end of
the NASA-TLX scale and that Mental Demand and
Frustration are the primary drivers of such high workload
levels in vigilance tasks. A second goal for the present
study was to determine if a simulated cyber task would
also induce hard work in observers, and if Mental Demand
and Frustration would be the primary components of that
workload in the cyber task that we employed. Such
knowledge may help supervisors and designers better
understand observers’ reactions to cyber monitoring
assignments.

METHODOLOGY

Participants

The study was conducted at the Air Force Research
Laboratory (AFRL), Wright-Patterson Air Force Base
(WPAFB). Twenty-four volunteers (14 men and 10

women) were recruited from base personnel and the local
population and paid a total of $45 each for their
participation. All participants had 20/20 or corrected
vision and no history of neurological problems. The study
was approved by the WPAFB Institutional Review Board
(IRB).

Apparatus and Procedure

Participants assumed the role of a cyber-defender
monitoring strings of IP addresses and communication
port numbers on a computer display. The task, which was
similar to that employed by McIntire et al.,24 was
developed by the University of Dayton Research Institute
(UDRI) to simulate a task that was representative of
cyber-defense operations. As shown in Figure 1, the
waterfall display was composed of two columns of six IP
addresses, each containing 12 digits, and two columns of
six communication port numbers, each containing two
digits. The task of the cyber-defender was to look for
cases in which the IP address and associated
communication port number at the top position of any
column completely matched an IP address/communication
port number that was already present in any one of the
other positions in that column (the critical signal for
detection). At regular intervals throughout the task, the
display would refresh and two new IP address/
communication port numbers would appear in the top
position of the columns. The previous entries would then
move down to the next row immediately below the top
position and the bottom series would disappear from the
display.

A) New candidate events populate from the top B) A Critical signal here two lines

of the destination address matchSource Addr. Source Port Dest. Addr Dest. Port

108.189.138.186 42 108.174.132.212 37

159.221.208.186 42 108.174.132.212 37

135.205.245.249 53 229.160.238.186 37

229.155.107.186 25 108.110.246.212 25

159.205.139.249 42 159.121.148.196 42

135.193.243.186 42 229.102.254.242 80

and drop away at the bottom

Figure 1.  Above, a screenshot of the waterfall display used
in the cyber task. A critical signal is present in the rightmost
“Dest. Port” column, as there is a match between the IP
address and associated communication port of the top
position and the second position. In 3.75 or 7.5 seconds,
dependent on event rate, another line of IP addresses would
drop down from the top, and the bottom line would drop
away.

We acknowledge here that the critical signal for detection
employed in this experiment could be algorithmically
identified and the associated attack automatically prevented
by an intrusion detection system due to its relative
unsophistication. However, in “real-world” cyber defense
contexts novel signatures are encountered for which there is
not an existing algorithmic response. In such instances,
human operators must detect and respond to attacks
exploiting that vulnerability while the algorithmic defense is
coded and put into place. We intended the context of the
current experiment to represent just such an occurrence.
More broadly, many present cyber-displays present far more
information in far less time than any “classical” vigilance
experiment display, and thus the present experiment can
build understanding of whether vigilance decrements might
be seen in such informationally dense tasks.

Two levels of signal probability (low vs. high) were
combined with two levels of event rate (slow vs. fast) to
produce four experimental conditions. Six participants were
assigned at random to each of these four conditions. All
participants completed a 40- minute vigil divided into four
continuous 10-minute periods of watch. During the task,
strings of IP addresses and port numbers were always
visible on the computer screen. In the slow event rate-high
signal probability condition, the display was updated eight
times/min with a 20% chance of the appearance of a critical
signal. In the slow event rate-low signal probability
condition, updates also occurred eight times/min but with a
5% chance of critical signal appearance. In the fast event
rate-high signal probability condition, the display was
updated 16 times/min with a 20% chance of the presence of a
critical signal. In the fast event rate-low signal probability
condition, updates also occurred 16 times/min but with a 5%
chance of critical signal appearance. Critical signal
appearance was scheduled so that only one of the two IP
address/communication port columns would have a signal at
any given time. Participants responded to critical signals by
pressing the spacebar on the computer keyboard.
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Responses occurring within three seconds of the
appearance of a critical signal were considered correct
detections. All other responses were scored as false alarms.
The participants were aware of this scoring procedure.

Preceding the 40-minute vigil, participants were given a 15-
minute training period on the cyber task. During that training
period the program played recorded auditory feedback in the
form of a male voice, indicating correct detections, misses,
and false alarms. Feedback was not provided during the main
task itself. Immediately following the conclusion of that task,
participants completed a computerized version of the NASA-
TLX.

RESULTS

Performance Efficiency

Mean percentages of correct detections and their associated
standard errors for all combinations of event rate, signal
probability, and time on task are presented in Table 1.

Table 1. Mean percent correct detection scores for all
combinations of signal probability and event rate during
each period of watch.

 
Signal Probability Event Rate 1 2 3 4 Mean

Low Slow 87.50 95.83 95.83 75.00 88.54
(5.59) (4.17) (4.17) (15.81) (7.43)

Fast 60.42 60.42 58.33 43.75 55.73
(7.51) (7.51) (6.97) (7.74) (7.43)

High Slow 95.83 91.67 88.54 80.21 89.06
(1.32) (3.84) (2.98) (6.13) (3.57)

Fast 77.08 77.60 76.56 77.60 77.21
(5.33) (6.01) (7.38) (4.80) (5.88)

Mean 80.21 81.38 79.82 69.14
(4.94) (5.38) (5.38) (8.62)

Period of Watch (10 minutes)

Note: Standard errors are in parentheses.

Perusal of Table 1 reveals that detection rates were lower in
the case of the low (M = 72.14%) signal probability condition
as compared to the high (M = 83.14%). Mean detection
scores were higher in the slow (M = 88.80%) event rate
condition as compared to the fast (M = 66.47%). In addition
there was a notable decline in signal detections during the
final period of watch. These patterns were confirmed by a 2
(event rate) × 2 (signal probability) × 4 (periods of watch)
mixed-model analysis of variance (ANOVA) of the arcsines
of the percentage of correct detections. This analysis
indicated statistically significant main effects for signal
probability, F (1, 20) = 4.26, p = .05, ηp

2=.18 event rate, F(1,
20) = 17.53, p < .001, ηp

2=.47, and period of watch, F(2.05,
40.93) = 5.44, p = .008, ηp

2=.21. The remaining sources of
variance in the analysis were not significant (p > .05 in each
case). However, the Signal Probability by Event Rate

interaction closely approached the traditional level of
significance, F(1,20) = 3.86, p = .06, ηp

2=.16. In this, as well
as in the analysis of the workload scores which follow, the
Box correction was applied when appropriate to compensate
for violations of the sphericity assumption.25

The Signal Probability by Event Rate interaction is illustrated
in Figure 2. It is evident in the graphic that the scores for the
two signal probability conditions were similarly high in the
context of the slow event rate. By contrast, in the context of
a fast event rate, performance efficiency in the high
probability condition was considerably better than in the low
probability condition.

False alarms were rare in this study. The overall false alarm
percentage across all experimental conditions was < 1%.
Consequently, false alarms were not analyzed further.

Figure 2. Mean percent detection scores for all combinations
of signal probability and event rate. Error bars are standard
errors.

Subjective Workload

Observers in all task conditions rated their workload on the
six subscales of the NASA-TLX. Following a procedure
recommended by Nygren,26 workload scores were based
solely on the ratings themselves and not on associated
weightings for each subscale. Mean workload values for all
combinations of event rate, signal probability, and NASA-
TLX subscales are presented in Table 2.

Table 2. Mean NASA-TLX subscale scores for all
combinations of signal probability and event rate.
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Signal Probability Event Rate MD PD TD P E F Composite

Low Slow 72.50 15.00 75.00 33.33 72.50 39.17 51.25

(11.38) (4.65) (6.45) (13.08) (6.55) (14.34) (9.41)

Fast 67.50 33.33 77.50 42.50 80.00 50.83 58.61

(10.63) (9.55) (8.14) (9.73) (9.31) (11.36) (9.78)

High Slow 85.83 4.17 55.00 23.33 62.50 33.33 44.03

(3.75) (0.83) (13.66) (5.87) (12.23) (10.46) (7.80)

Fast 86.67 17.50 82.50 45.00 80.00 51.67 60.56

(5.11) (8.73) (7.39) (12.32) (7.64) (8.82) (8.33)

Mean 78.13 17.50 72.50 36.04 73.75 43.75 53.61

(7.72) (5.94) (8.91) (10.25) (8.93) (11.25) (8.83)

Subscale

 

Note: Standard errors are in parentheses. Mean NASA Task Load
Index (TLX) scores are listed for the subscales of Mental Demand
(MD), Physical Demand (PD), Temporal Demand (TD),
Performance (P), Effort (E), and Frustration (F).

As can be seen in Table 2, the overall composite workload
rating for all task conditions (M = 53.61) fell above the
midpoint of the scale (50), suggesting that participants
found the cyber monitoring assignment to be demanding. A
2 (event rate) × 2 (signal probability) × 6 (subscales) mixed
ANOVA of the workload data revealed a significant main
effect for event rate, F(1, 20) = 5.32, p = .03, ηp

2= .21,
signifying that observers in the fast event rate condition
(M= 59.58) found their vigilance assignments to be more
challenging than those in the slow event rate condition (M =
47.64). A significant main effect was also found for
subscales, F(2.88, 57.66) = 33.02, p < .001, ηp

2= .62.
Bonferroni-corrected t-tests with alpha set at .05 indicated
that participants perceived Mental Demand, Temporal
Demand, and Effort as the greatest contributors to overall
workload in the present circumstances. The means for these
scales, which fell at the upper level of the workload index,
differed significantly from those of all the other scales (p <
.05 in all cases) but not from each other. The main effect for
signal probability and all of the interactions in the analysis
lacked significance (p > .05 in all cases).

DISCUSSION

Consistent with results first reported by McIntire et
al.,27 performance efficiency on the cyber task was
susceptible to the vigilance decrement. In the present

case, the decrement consisted of a notable drop in signal
detection during the last period of watch after participants
had maintained a stable level of performance across three
earlier watchkeeping periods. The temporal step-function in
regard to the cyber task differs from the decrement seen in
more traditional vigilance tasks in which typically there is a
negatively accelerated progressive decline in performance
efficiency over time.28  A major theory used to account for
the deterioration of performance efficiency over time
characteristic of vigilance tasks is anchored in resource
theory, wherein a limited-capacity information processing

system allocates resources or reservoirs of energy to deal
with the tasks that confront it. Since vigilance tasks require
observers to make continuous signal/noise discriminations
without rest, such tasks deplete available cognitive
resources over time, which results in the vigilance
decrement.29 30 31 32 The step-function observed in our
present study may be based on a combination of both
motivation and resource loss.33 34 More specifically, since
the present participants were engaged in what they were
informed was a critical Air Force assignment—cyber-
defense—and were paid a substantial sum for serving in the
study, they may have been motivated to sustain a high level
of performance. However, over time they were unable to do
so, potentially because of diminished information processing
resources, a situation that is arguably reflected in the high
scores seen on the NASA TLX, especially in the Effort
subscale.

 It is evident that operators cannot sustain
performance in cyber tasks such as the one
presented by our testbed over prolonged
intervals of time. Consequently, this finding
must be considered in work scheduling.

We should note that it was not a forgone conclusion that
the information-rich cyber task would result in any form of
decrement. Some complex tasks exhibit attenuated or
absent decrements, especially when they involve diverse
subtasks.35 36 In other cases however, complexity can
amplify the decrement.37 38 Given the pattern we observed,
cyber tasks appear to fall in the former category.

It is evident that operators cannot sustain performance in
cyber tasks such as the one presented by our testbed
over prolonged intervals of time. Consequently, this
finding must be considered in work scheduling. Given the
present data, instituting a 30-minute shift length for
operators should be beneficial. Further, as McIntire and
her associates have indicated,39 the development of non-
invasive methods could enable supervisors to monitor a
cybersecurity operator’s need for rest or replacement. The
oculomotor changes described by McIntire et al.,40 such
as increased blink rate and longer blink durations, offer
one approach by which supervisors might “monitor the
monitor.”

Another possibility that supervisors of cyber-security
operators might consider is the use of Transcranial
Doppler (TCD) sonography, a non-invasive neuroimaging
method involving sensors worn in a headband, to assess
cerebral blood flow velocity (CBFV). Several studies have
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shown that the vigilance decrement is accompanied by a
decline in CBFV, and that the changes in CBFV can
forecast declines in operator efficiency.41 42 43 44 Regarding
electroencephalography (EEG), increases in lower frequency
alpha power (8-10.9 Hz) also appear to be diagnostic of loss
of vigilance in high event rate tasks.45

Consistent with the findings of a large number of vigilance
studies,46 47 participants in the cyber task benefited from a
high level of signal probability. In an insightful analysis of
human factors principles involved in the control of vigilance,
Craig pointed out that one way to enhance the quality of
sustained attention in operational settings is to reduce
signal uncertainty.48 Increments in signal probability clearly
reduce signal uncertainty. Consequently, when signal
probability is low, as is often the case in cyber-security
operations, controllers might give some thought to
introducing artificial signals in order to increase signal
probability and thereby the likelihood of critical signal
detection. A strategy of that sort would require careful
thought, however, for as Craig (1984) has pointed out,
artificial signals also increase the frequency of false alarms,
which themselves can have a negative impact on cyber-
security operations.49

Clearly, event rate is a key factor in cyber
performance and should be considered in
the design of cyber-security systems.

The concept of boosting detection through artificial inflation
of signal probability gives rise to a corollary potential: a
prevalence denial attack (PDA) upon enemy operators. By
flooding a network with “grey signals,” purposely built to be
flagged by algorithmic defense systems but easily identified
as non-threats by human operators, an aggressor would
artificially depress the signal probability of candidate events
presented to cyber-defenders. This imposition of
impoverished signal probability would compromise operator
accuracy, allowing genuine attacks a greater chance to avoid
human detection.  Such a “PDA,” therefore, represent a style
of D&D perhaps analogous to the Chinese concept of
“seduction,” in which an enemy is induced to make a fatal
mistake.50

Vigilance experiments often employ dynamic displays
wherein the critical signals for detection are embedded in a
matrix of recurring neutral background events. Although the
background events may be neutral in the sense that they
require no overt response from the observer, they are far
from neutral in their influence on signal detection.51 Signal
detections vary inversely with event rate, and event rate
serves as a moderator variable for other psychophysical

factors. For example, the degrading effects of low signal
probability are magnified in the context of a fast as compared
to a slow event rate.52 53 Outcomes such as these were
evident in the cyber task that we employed in this study.
Signal detection was poorer in the context of a fast as
compared to a slow event rate and the differential effects of
variations in signal probability were observed only in the
fast event rate condition.

Clearly, event rate is a key factor in cyber performance and
should be considered in the design of cyber-security
systems. As with the case of the vigilance decrement, the
effects of event rate can also be accounted for on the basis
of the resource model. Fast event rates require observers to
make more frequent signal/noise discriminations than slow
event rates and, therefore, deplete information-processing
assets to a greater degree.54 From an operational viewpoint,
it might seem reasonable to expect that the more an operator
is required to view the cyber display, the more likely the
operator is to detect adverse events. The event rate effect
indicates this is not necessarily so, and designers of cyber
displays should be heedful of establishing an event rate that
maximizes performance in the systems that they develop.

Along this line, we should note that, in traditional vigilance
tasks, event rates which are below 24 events/min are
categorized as slow, while those greater than 24 events/min
are considered as fast55 56. In our current study, 8 events/min
constituted the slow event rate while the fast event rate was
only 16 event/min, a value well below the 24 event/min
criterion for the definition of a fast event rate. The fast event
used in the present experiment was chosen because pilot
work revealed that observers could not perform the task
effectively at event rates of 24/min or more. Evidently, cyber
task performance is extremely sensitive to event rate effects.

At first glance, vigilance tasks can seem to be relatively
simple and under-stimulating assignments since all
observers are required to do is view a display and take
action when a critical event occurs. On the contrary,
Hancock and Warm57 were the first to propose, and then
subsequently demonstrate that that the cost of mental
operations in vigilance is high.58 This proposition has been
confirmed a number of times, as reflected in scores on the
NASA-TLX and the finding that Mental Demand and
Frustration are the primary components of workload in
vigilance.59 60 61 Our present results indicate that cyber
operations also induce high levels of mental demand as seen
through the lens of the NASA-TLX—overall workload
ratings were above the midpoint of the NASA-TLX and the
scores for the Mental Demand, Temporal Demand, and Effort
components of workload fell at the upper level of the
workload index.

It is of interest to note that, while the portrait of critical
workload components in the present cyber task included
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Mental Demand, it also included Temporal Demand and
Effort, which are not often included in the ensemble of key
workload elements identified in more traditional vigilance
tasks. These differences in the profile of workload
components may be related to the need for rapid responding
and display scanning inherent in the cyber task employed
herein and to the participants’ awareness of the importance
of the task they were performing for Air Force operations.

As described by Wickens et al.,62 mental workload
characterizes the demands that tasks make on the limited
information processing capacity of observers. Excessive
levels of demand lead to declines in performance efficiency
and to heightened levels of task-related stress.63

Consequently, the high level of workload reported in the
current experiment should be a concern to designers of
cybersecurity interfaces. From the resource view, care
should be taken not to develop cyber displays in which
mental demands exceed resource supply, and to generate
remedies for cyber tasks that pose threats to that supply.
Given the high workload of cyber tasks, managers should be
mindful of the fact that cyber tasks can be stressful and of
the implications of stress for performance efficiency and
operator health.64 65

In sum, our study was conducted to determine if cyber tasks
are linked to more traditional vigilance tasks. The answer to
that question is a resounding “yes.” Accordingly, cyber
system designers need to be aware of the information-
processing demands imposed by vigilance tasks and the
steps that can be taken to minimize the negative effects of
these demands on operator performance in cyber
environments. We identify two classic factors on which—in
cyber tasks as in “classical” vigilance—such vigilance
performances hinges:  event rate and signal probability.  The
former is firmly in the hands of the defender, as the number
of operators may be ramped up to satisfy demand, and as
such can be considered in part a human resources problem.
The latter, signal probability, is more problematic. Although
artificial “critical events” might be introduced to boost
operator performance, such tactics have drawbacks. An
attacker, however, would have little difficulty boosting “non-
critical events,” to the detriment of cyber-defender
performance, in a D&D PDA (prevalence denial attack).
Immediate action can be taken to reduce the above identified
risks, and they also reveal as critical the ongoing push to
train more cyber-defenders. Such steps are vitally necessary
to address not only algorithmic challenges in cyber-defense
but also the human factor.
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